The Vitis labrusca is a grapevine that has antioxidant, neuroprotective, hepatoprotective, and anticarcinogenic activity. However, the effect of Vitis labrusca leaves on the cardiovascular system is yet to be ascertained. The present study was designed to investigate the effects of Vitis labrusca leaves extract (HP1) on cardiovascular remodeling in spontaneously hypertensive rats. Experiments were performed in rats and were randomly divided into the following groups: Wistar Kyoto rat (WKY), normal control group; spontaneously hypertensive rats (SHR), negative control group; SHR + Losa, positive control group (losartan, 10 mg/kg/daily, AT1 receptor blocker) and SHR + HP1 (100 mg/kg/daily). HP1 was orally administered daily for 4 weeks. The HP1 treatment significantly improved blood pressure, electrocardiographic parameters, and echocardiogram parameters compared to hypertensive rats. Additionally, the left ventricular (LV) remodeling and LV dysfunction were significantly improved in HP1-treated hypertensive rats. Furthermore, an increase in fibrotic area has been observed in hypertensive rats compared with WKY. However, administration of HP1 significantly attenuated cardiac fibrosis in hypertensive rats. Moreover, HP1 suppressed the expression of high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), receptor for advanced glycation end products (RAGE), and extracellular signal-regulated kinases (ERK1/2) induced by hypertensive rats, resulting in improved vascular remodeling. Therefore, these results suggest that HP1 can improve the cardiovascular remodeling in hypertensive rats, and the mechanisms may be related to the suppressive effect of HP1 on HMGB1-TLR4-NFκB signaling in the cardiovascular system. Thus, the protective role of the traditional herbal medicine HP1 may provide new insights into the development of therapeutic drugs on the development of hypertensive cardiovascular dysfunction.
Joa-gui em (左歸飮, JGE) is known to be effective for treating kidney-yin deficient syndrome. However, there is a lack of objective pharmacological research on improving kidney function. This study was designed to evaluate whether JGE improves renal function and related mechanisms in rats with acute renal injury induced by ischemia/reperfusion (I/R). The acute renal failure (ARF) group was subjected to reperfusion after inserting a clip into the renal artery for 45 min. The ARF + JGE (100 or 200 mg/kg/day) groups were orally administered for four days after their I/R surgery, respectively. JGE treatment suppressed the increase in kidney size in the ARF animal model and alleviated the polyuria symptoms. In addition, to confirm the effect of improving the kidney function of JGE, lactate dehydrogenase levels, blood urea nitrogen/creatinine ratio, and creatinine clearance were measured. As a result, it decreased in the ARF group but significantly improved in the JGE group. Also, as a result of examining the morphological aspects of renal tissue, it was shown that JGE improved renal fibrosis caused by ARF. Meanwhile, it was confirmed that JGE reduced inflammation through the nucleotide-binding oligomerization domain-like receptor pyrin domain containing-3 (NLRP3) and toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathways, which are the major causes of acute ischemic kidney injury, thereby improving renal function disorder. The JGE has a protective effect by improving the NLRP3 and TLR4/NF-κB signaling pathway in rats with acute renal dysfunction induced by I/R injury.
In this study, we evaluated the effect of a traditional herbal formula, Ma Huang Tang (MHT), on blood pressure and vasodilation in a rat model of NG‐nitro‐L‐arginine methylester- (L-NAME-) induced hypertension. We found that MHT-induced vascular relaxation in a dose-dependent manner in rat aortas pretreated with phenylephrine. However, pretreatment of endothelium-intact aortic rings with L‐NAME, an inhibitor of nitric oxide synthesis (NOS), or 1H‐[1, 2, 4]‐oxadiazole‐[4, 3‐α]‐quinoxalin‐1‐one (ODQ), an inhibitor of soluble guanylyl cyclase, significantly abolished vascular relaxation induced by MHT. MHT also increased the production of guanosine 3′,5′-cyclic monophosphate (cGMP) in the aortic rings pretreated with L-NAME or ODQ. To examine the in vivo effects of MHT, Sprague Dawley rats were treated with 40 mg/kg/day L-NAME for 3 weeks, followed by administration of 50 or 100 mg/kg/day MHT for 2 weeks. MHT was found to significantly normalize systolic blood pressure and decreased intima-media thickness in aortic sections of rats treated with L-NAME compared to that of rats treated with L-NAME alone. MHT also restored the L-NAME-induced decrease in vasorelaxation response to acetylcholine and endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression. Furthermore, MHT promoted the recovery of renal function, as indicated by osmolality, blood urea nitrogen (BUN) levels, and creatinine clearance. These results suggest that MHT-induced relaxation in the thoracic aorta is associated with activation of the nitric oxide/cGMP pathway. Furthermore, it provides new therapeutic insights into the regulation of blood pressure and renal function in hypertensive patients.
Hypertension is a risk factor for cardiovascular diseases and endothelial dysfunction was found in humans as well as in various animal experimental models of arterial hypertension. Samchulkunbitang (SCT) is Korean traditional medicine. Traditionally, the SCT was used in gastritis, gastric ulcers, and gastroptosis. This study was performed to evaluate the effect of SCT on vascular dysfunction in NG‐nitro‐L‐arginine methyl ester (L‐NAME)‐induced hypertension model. Sprague Dawley rats were divided into 5 groups; Control group, L‐NAME induced hypertension group (40 mg/kg/day), L‐NAME with olmetec (10 mg/kg/day), L‐NAME with SCT (100 or 200 mg/kg/day). L‐NAME was treated as drinking water for 3 weeks to induce hypertension in rats. Simultaneously treated L‐NAME, SCT was injected to rats by oral intake for 2 weeks. The systolic blood pressure was decreased in SCT treated groups compared with L‐NAME induced hypertension group. SCT restored vasorelaxation of response to acetylcholine, cGMP production in thoracic aorta. SCT decreased intima‐media thickness and maintained smooth and soft intimal endothelial layers in aorta of L‐NAME induced hypertension rats. SCT restored the reduction eNOS expression and decreased ET‐1 expression. Also, in western blot, SCT increased p‐eNOS and p‐Akt expression in aorta of L‐NAME hypertensive rat. Furthermore, in renal functional parameters, SCT has recovered osmolality, blood urea nitrogen (BUN), and serum creatinine level.Taken together, these results showed that recovering relaxation and cGMP production in thoracic aorta by treated SCT, which is associated with NO/cGMP pathway. In addition, SCT suppresses increase of blood pressure in the L‐NAME induced hypertensive model as well as ameliorates in renal function.Support or Funding InformationThis abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.