In this work, the corrosion behavior of tempered AISI 420 martensitic stainless steel (MSS) was studied by in-situ atomic force microscopy (AFM) in 0.1 M NaCl and correlated with the microstructure. Thermocalc simulation, dilatometry, and X-ray diffraction (XRD) were performed to investigate phase transformation which showed the formation of M 3 C, M 7 C 3 , and M 23 C 6 type of carbides and also retained austenite. Optical microscopy, scanning electron microscopy (SEM), and AFM characterization revealed undissolved carbides and tempering carbides in the martensitic matrix. Volta potential mapping measured by scanning Kelvin probe force microscopy (SKPFM) indicated higher electrochemical (practical) nobility of the carbides with respect to the martensitic matrix whereas regions adjacent to carbides showed lower nobilities due to chromium depletion. Open circuit potential and cyclic potentiodynamic polarization measurements showed metastable corrosion activities associated with a weak passive behavior and a risk for localized corrosion along certain carbide boundaries. In-situ AFM measurements revealed selective dissolution of certain carbide interphases and martensitic inter-lath regions indicating higher propensity to localized corrosion.
The effect of secondary hardening of tempered AISI 420 martensitic stainless steel on the corrosion behavior in aqueous 0.01 M NaCl has been studied, in-situ, using atomic force microscopy (AFM) to monitor real-time localized corrosion processes. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses confirmed the presence of undissolved and secondary carbides (Cr 23 C 6 , Cr 7 C 3 , Cr 3 C 2 , Cr 3 C, Cr 2 C, and CrC) as well as retained austenite, all finely dispersed in the tempered martensitic matrix. Electrochemical measurements, consisted of monitoring of the open-circuit potential vs. time and cyclic polarization in 0.01 M NaCl solution, were performed to evaluate the passivity and its breakdown, and it was seen that initiation sites for localized corrosion were predominantly peripheral sites of carbides. In-situ AFM measurements revealed that there was a sequence for localized corrosion in which the neighboring matrix next to secondary carbides dissolved first, followed by corrosive attack on regions adjacent to undissolved carbides. Tempering at 500 • C reduced the corrosion resistance and the ability to passivate in comparison to tempering at 250 • C.
The composition of carbides in steel, measured by atom probe tomography, can be influenced by limitations in the ion detector system. When carbides are analyzed, many ions tend to field evaporate from the same region of the specimen during the same laser or voltage pulse. This results in a so-called multiple event, meaning that several ions impact the detector in close proximity both in time and space. Due to a finite detector dead-time not all ions can be detected, a phenomenon known as detector pile-up. The evaporation behavior of carbon is often different than the evaporation behavior of metals when analyzing alloy carbides, leading to preferential loss of carbon ions, and a measured carbon concentration below the expected value. This effect becomes stronger as the overall detection efficiency gets higher. Here, the detection efficiency was deliberately reduced by inserting a grid into the flight-path, which resulted in a higher and more correct carbon concentration, accompanied by an increase in the statistical uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.