We demonstrate long trion spin lifetimes in a WSe2 monolayer of up to 150 ns at 5 K. Applying a transverse magnetic field in time-resolved Kerr-rotation measurements reveals a complex composition of the spin signal of up to four distinct components. The Kerr rotation signal can be well described by a model which includes inhomogeneous spin dephasing and by setting the trion spin lifetimes to the measured excitonic recombination times extracted from time-resolved reflectivity measurements. We observe a continuous shift of the Kerr resonance with the probe energy, which can be explained by an adsorbate-induced, inhomogeneous potential landscape of the WSe2 flake. A further indication of extrinsic effects on the spin dynamics is given by a change of both the trion spin lifetime and the distribution of g-factors over time. Finally, we detect a Kerr rotation signal from the trion's higher-energy triplet state when the lower-energy singlet state is optically pumped by circularly polarized light. We explain this by the formation of dark trion states, which are also responsible for the observed long trion spin lifetimes. arXiv:1702.03712v1 [cond-mat.mtrl-sci]
Full electric-field control of spin orientations is one of the key tasks in semiconductor spintronics. We demonstrate that electric-field pulses can be utilized for phase-coherent ±π spin rotation of optically generated electron spin packets in InGaAs epilayers detected by time-resolved Faraday rotation. Through spin-orbit interaction, the electric-field pulses act as local magnetic field pulses. By the temporal control of the local magnetic field pulses, we can turn on and off electron spin precession and thereby rotate the spin direction into arbitrary orientations in a two-dimensional plane. Furthermore, we demonstrate a spin-echo-type spin drift experiment and find an unexpected partial spin rephasing, which is evident by a doubling of the spin dephasing time.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Time-resolved magneto-optics is a well-established optical pump-probe technique to generate and to probe spin coherence in semiconductors. By this method, spin dephasing times T * 2 can easily be determined if their values are comparable to the available pump-probe delays. If T * 2 exceeds the laser repetition time, however, resonant spin amplification (RSA) can equally be used to extract T * 2 . We demonstrate that in ZnO these techniques have several tripping hazards resulting in deceptive values for T * 2 and show how to avoid them. We show that the temperature dependence of the amplitude ratio of two separate spin species can easily be misinterpreted as a strongly temperature-dependent T * 2 of a single spin ensemble, while the two spin species have T * 2 values, which are nearly independent of temperature. Additionally, consecutive pump pulses can significantly diminish the spin polarization, which remains from previous pump pulses. While this barely affects T * 2 values extracted from delay line scans, it results in seemingly shorter T * 2 values in RSA.
We demonstrate all-electrical spin generation and subsequent manipulation by two successive electric field pulses in an n-InGaAs heterostructure in a time-resolved experiment at zero external magnetic field. The first electric field pulse along the [11¯0] crystal axis creates a current-induced spin polarization (CISP) which is oriented in the plane of the sample. The subsequent electric field pulse along [110] generates a perpendicular magnetic field pulse leading to a coherent precession of this spin polarization with 2-dimensional electrical control over the final spin orientation. Spin precession is probed by time-resolved Faraday rotation. We determine the build-up time of CISP during the first field pulse and extract the spin dephasing time and internal magnetic field strength during the spin manipulation pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.