The pandemic has challenged countries to develop stringent measures to reduce infections and keep the population healthy. However, the greatest challenge is understanding the process of adopting self-care measures by individuals in different countries. In this research, we sought to understand the behavior of individuals who take self-protective action. We selected the risk homeostasis approach to identify relevant variables associated with the risk of contagion and the Protective Action Decision Model to understand protective decision-making in the pandemic. Subsequently, we conducted an exploratory survey to identify whether the same factors, as indicated in the literature, impact Chile’s adoption of prevention measures. The variables gender, age, and trust in authority behave similarly to those found in the literature. However, socioeconomic level, education, and media do not impact the protection behaviors adopted to avoid contagion. Furthermore, the application of the Protective Action Decision Model is adequate to understand the protective measures in the case of a pandemic. Finally, women have a higher risk perception and adopt more protective measures, and in contrast, young people between 18 and 30 years of age are the least concerned about COVID-19 infection.
Multi-Attribute Vehicle Routing Problems (MAVRP) are variants of Vehicle Routing Problems (VRP) in which, besides the original constraint on vehicle capacity present in Capacitated Vehicle Routing Problem (CVRP), other attributes that model diverse real-life system characteristics are present. Among the most common attributes studied in the literature are vehicle capacity and route duration constraints. The influence of these restrictions on the overall structure of the problem and the performance of local search algorithms used to solve it has yet to be well known. This paper aims to explain the impact of constraints present in different variants of VRP through the alterations of the structure of the underlying search space that they cause. We focus on Local Optima Network Analysis (LONA) for multiple Traveling Salesman Problem (m-TSP) and VRP with vehicle capacity (CVRP), route duration (DVRP), and both (DCVRP) constraints. We present results that indicate that measures obtained for a sample of local optima provide valuable information on the behavior of the landscape under modifications in the problem’s constraints. Additionally, we use the LONA measures to explain the difficulty of VRP instances for solving by local search algorithms.
Vehicle Routing Problems (VRP) comprise many variants obtained by adding to the original problem constraints representing diverse system characteristics. Different variants are widely studied in the literature; however, the impact that these constraints have on the structure of the search space associated with the problem is unknown, and so is their influence on the performance of search algorithms used to solve it. This article explores how assignation constraints (such as a limited vehicle capacity) impact VRP by disturbing the network structure defined by the solution space and the local operators in use. This research focuses on Fitness Landscape Analysis for the multiple Traveling Salesman Problem (m-TSP) and Capacitated VRP (CVRP). We propose a new Fitness Landscape Analysis measure that provides valuable information to characterize the fitness landscape’s structure under specific scenarios and obtain several relationships between the fitness landscape’s structure and the algorithmic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.