We develop a multilevel algorithm for hypergraph partitioning that contracts the vertices one at a time. Using several caching and lazy-evaluation techniques during coarsening and refinement, we reduce the running time by up to two-orders of magnitude compared to a naive n-level algorithm that would be adequate for ordinary graph partitioning. The overall performance is even better than the widely used hMetis hypergraph partitioner that uses a classical multilevel algorithm with few levels. Aided by a portfolio-based approach to initial partitioning and adaptive budgeting of imbalance within recursive bipartitioning, we achieve very high quality. We assembled a large benchmark set with 310 hypergraphs stemming from application areas such VLSI, SAT solving, social networks, and scientific computing. We achieve significantly smaller cuts than hMetis and PaToH, while being faster than hMetis. Considerably larger improvements are observed for some instance classes like social networks, for bipartitioning, and for partitions with an allowed imbalance of 10%. The algorithm presented in this work forms the basis of our hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning).
We develop a fast and high quality multilevel algorithm that directly partitions hypergraphs into k balanced blocks -without the detour over recursive bipartitioning. In particular, our algorithm efficiently implements the powerful FM local search heuristics for the complicated k-way case. This is important for objective functions which depend on the number of blocks connected by a hyperedge. We also remove several further bottlenecks in processing large hyperedges, develop a faster contraction algorithm, and a new adaptive stopping rule for local search. To further reduce the size of hyperedges, we develop a pin-sparsifier based on the min-hashing technique that clusters vertices with similar neighborhood. Extensive experiments indicate that our KaHyPar-partitioner compares favorably with the best previous systems. KaHyPar is faster than hMetis and computes better solutions. KaHyPar's results are considerably better than the (faster) PaToH partitioner.
We present a refinement framework for multilevel hypergraph partitioning that uses max-flow computations on pairs of blocks to improve the solution quality of a k-way partition. The framework generalizes the flow-based improvement algorithm of KaFFPa from graphs to hypergraphs and is integrated into the hypergraph partitioner KaHyPar. By reducing the size of hypergraph flow networks, improving the flow model used in KaFFPa, and developing techniques to improve the running time of our algorithm, we obtain a partitioner that computes the best solutions for a wide range of benchmark hypergraphs from different application areas while still having a running time comparable to that of hMetis.for hypergraphs with large hyperedges. In these cases, it is difficult to find meaningful vertex moves that improve the solution quality because large hyperedges are likely to have many vertices in multiple blocks [53]. Thus the gain of moving a single vertex to another block is likely to be zero [41].While finding balanced minimum cuts in hypergraphs is NP-hard, a minimum cut separating two vertices can be found in polynomial time using network flow algorithms and the well-known max-flow min-cut theorem [21]. Flow algorithms find an optimal min-cut and do not suffer the drawbacks of move-based approaches. However, they were long overlooked as heuristics for balanced partitioning due to their high complexity [40,57]. In the context of graph partitioning, Sanders and Schulz [47] recently presented a max-flow-based improvement algorithm which is integrated into the multilevel partitioner KaFFPa and computes high quality solutions.Outline and Contribution. Motivated by the results of Sanders and Schulz [47], we generalize the max-flow min-cut refinement framework of KaFFPa from graphs to hypergraphs. After introducing basic notation and giving a brief overview of related work and the techniques used in KaFFPa in Section 2, we explain how hypergraphs are transformed into flow networks and present a technique to reduce the size of the resulting hypergraph flow network in Section 3.1. In Section 3.2 we then show how this network can be used to construct a flow problem such that the min-cut induced by a max-flow computation between a pair of blocks improves the solution quality of a k-way partition. We furthermore identify shortcomings of the KaFFPa approach that restrict the search space of feasible solutions significantly and introduce an advanced model that overcomes these limitations by exploiting the structure of hypergraph flow networks. We implemented our algorithm in the open source HGP framework KaHyPar and therefore briefly discuss implementation details and techniques to improve the running time in Section 3.3. Extensive experiments presented in Section 4 demonstrate that our flow model yields better solutions than the KaFFPa approach for both hypergraphs and graphs. We furthermore show that using pairwise flow-based refinement significantly improves partitioning quality. The resulting hypergraph partitioner, KaHyPar-MF, perfor...
We present a shared-memory algorithm to compute high-quality solutions to the balanced k-way hypergraph partitioning problem. This problem asks for a partition of the vertex set into k disjoint blocks of bounded size that minimizes the connectivity metric (i.e., the sum of the number of different blocks connected by each hyperedge). High solution quality is achieved by parallelizing the core technique of the currently best sequential partitioner KaHyPar: the most extreme n-level version of the widely used multilevel paradigm, where only a single vertex is contracted on each level. This approach is made fast and scalable through intrusive algorithms and data structures that allow precise control of parallelism through atomic operations and fine-grained locking. We perform extensive experiments on more than 500 real-world hypergraphs with up to 140 million vertices and two billion pins (sum of hyperedge sizes). We find that our algorithm computes solutions that are on par with a comparable configuration of KaHyPar while being an order of magnitude faster on average. Moreover, we show that recent non-multilevel algorithms specifically designed to partition large instances have considerable quality penalties and no clear advantage in running time.
We present the design and a first performance evaluation of Thrill -a prototype of a general purpose big data processing framework with a convenient data-flow style programming interface. Thrill is somewhat similar to Apache Spark and Apache Flink with at least two main differences. First, Thrill is based on C++ which enables performance advantages due to direct native code compilation, a more cachefriendly memory layout, and explicit memory management. In particular, Thrill uses template meta-programming to compile chains of subsequent local operations into a single binary routine without intermediate buffering and with minimal indirections. Second, Thrill uses arrays rather than multisets as its primary data structure which enables additional operations like sorting, prefix sums, window scans, or combining corresponding fields of several arrays (zipping).We compare Thrill with Apache Spark and Apache Flink using five kernels from the HiBench suite. Thrill is consistently faster and often several times faster than the other frameworks. At the same time, the source codes have a similar level of simplicity and abstraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.