This paper introduces a publicly available dataset of complex activities that involve manipulative gestures. The dataset captures people preparing mixed salads and contains more than 4.5 hours of accelerometer and RGB-D video data, detailed annotations, and an evaluation protocol for comparison of activity recognition algorithms. Providing baseline results for one possible activity recognition task, this paper further investigates modality fusion methods at different stages of the recognition pipeline: (i) prior to feature extraction through accelerometer localization, (ii) at feature level via feature concatenation, and (iii) at classification level by combining classifier outputs. Empirical evaluation shows that fusing information captured by these sensor types can considerably improve recognition performance.
COVID-19 abatement strategies have risks and uncertainties which could lead to repeating waves of infection. We show—as proof of concept grounded on rigorous mathematical evidence—that periodic, high-frequency alternation of into, and out-of, lockdown effectively mitigates second-wave effects, while allowing continued, albeit reduced, economic activity. Periodicity confers (i) predictability, which is essential for economic sustainability, and (ii) robustness, since lockdown periods are not activated by uncertain measurements over short time scales. In turn—while not eliminating the virus—this fast switching policy is sustainable over time, and it mitigates the infection until a vaccine or treatment becomes available, while alleviating the social costs associated with long lockdowns. Typically, the policy might be in the form of 1-day of work followed by 6-days of lockdown every week (or perhaps 2 days working, 5 days off) and it can be modified at a slow-rate based on measurements filtered over longer time scales. Our results highlight the potential efficacy of high frequency switching interventions in post lockdown mitigation. All code is available on Github at https://github.com/V4p1d/FPSP_Covid19. A software tool has also been developed so that interested parties can explore the proof-of-concept system.
Bayesian probabilistic modeling is supported by powerful computational tools like probabilistic programming and efficient Markov Chain Monte Carlo (MCMC) sampling. However, the results of Bayesian inference are challenging for users to interpret in tasks like decision-making under uncertainty or model refinement. Decision-makers need simultaneous insight into both the model's structure and its predictions, including uncertainty in inferred parameters. This enables better assessment of the risk overall possible outcomes compatible with observations and thus more informed decisions. To support this, we see a need for visualization tools that make probabilistic programs interpretable to reveal the interdependencies in probabilistic models and their inherent uncertainty. We propose the automatic transformation of Bayesian probabilistic models, expressed in a probabilistic programming language, into an interactive graphical representation of the model's structure at varying levels of granularity, with seamless integration of uncertainty visualization. This interactive graphical representation supports the exploration of the prior and posterior distribution of MCMC samples. The interpretability of Bayesian probabilistic programming models is enhanced through the interactive graphical representations, which provide human users with more informative, transparent, and explainable probabilistic models. We present a concrete implementation that translates probabilistic programs to interactive graphical representations and show illustrative examples for a variety of Bayesian probabilistic models.
Central neuropathic pain (CNP) negatively impacts the quality of life in a large proportion of people with spinal cord injury (SCI). With no cure at present, it is crucial to improve our understanding of how CNP manifests, to develop diagnostic biomarkers for drug development, and to explore prognostic biomarkers for personalised therapy. Previous work has found early evidence of diagnostic and prognostic markers analysing Electroencephalogram (EEG) oscillatory features. In this paper, we explore whether non-linear non-oscillatory EEG features, specifically Higuchi Fractal Dimension (HFD), can be used as prognostic biomarkers to increase the repertoire of available analyses on the EEG of people with subacute SCI, where having both linear and non-linear features for classifying pain may ultimately lead to higher classification accuracy and an intrinsically transferable classifier. We focus on EEG recorded during imagined movement because of the known relation between the motor cortex over-activity and CNP. Analyses were performed on two existing datasets. The first dataset consists of EEG recordings from able-bodied participants (N = 10), participants with chronic SCI and chronic CNP (N = 10), and participants with chronic SCI and no CNP (N = 10). We tested for statistically significant differences in HFD across all pairs of groups using bootstrapping, and found significant differences between all pairs of groups at multiple electrode locations. The second dataset consists of EEG recordings from participants with subacute SCI and no CNP (N = 20). They were followed-up 6 months post recording to test for CNP, at which point (N = 10) participants had developed CNP and (N = 10) participants had not developed CNP. We tested for statistically significant differences in HFD between these two groups using bootstrapping and, encouragingly, also found significant differences at multiple electrode locations. Transferable machine learning classifiers achieved over 80% accuracy discriminating between groups of participants with chronic SCI based on only a single EEG channel as input. The most significant finding is that future and chronic CNP share common features and as a result, the same classifier can be used for both. This sheds new light on pain chronification by showing that frontal areas, involved in the affective aspects of pain and believed to be influenced by long-standing pain, are affected in a much earlier phase of pain development.
Haptic displays are commonly limited to transmitting a discrete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the linear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and personalisation through sensitivity adjustment increased decoding precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.