Background Displeasure with the functionality of clinical decision support systems (CDSSs) is considered the primary challenge in CDSS development. A major difficulty in CDSS design is matching the functionality to the desired and actual clinical workflow. Computer-interpretable guidelines (CIGs) are used to formalize medical knowledge in clinical practice guidelines (CPGs) in a computable language. However, existing CIG frameworks require a specific interpreter for each CIG language, hindering the ease of implementation and interoperability. Objective This paper aims to describe a different approach to the representation of clinical knowledge and data. We intended to change the clinician’s perception of a CDSS with sufficient expressivity of the representation while maintaining a small communication and software footprint for both a web application and a mobile app. This approach was originally intended to create a readable and minimal syntax for a web CDSS and future mobile app for antenatal care guidelines with improved human-computer interaction and enhanced usability by aligning the system behavior with clinical workflow. Methods We designed and implemented an architecture design for our CDSS, which uses the model-view-controller (MVC) architecture and a knowledge engine in the MVC architecture based on XML. The knowledge engine design also integrated the requirement of matching clinical care workflow that was desired in the CDSS. For this component of the design task, we used a work ontology analysis of the CPGs for antenatal care in our particular target clinical settings. Results In comparison to other common CIGs used for CDSSs, our XML approach can be used to take advantage of the flexible format of XML to facilitate the electronic sharing of structured data. More importantly, we can take advantage of its flexibility to standardize CIG structure design in a low-level specification language that is ubiquitous, universal, computationally efficient, integrable with web technologies, and human readable. Conclusions Our knowledge representation framework incorporates fundamental elements of other CIGs used in CDSSs in medicine and proved adequate to encode a number of antenatal health care CPGs and their associated clinical workflows. The framework appears general enough to be used with other CPGs in medicine. XML proved to be a language expressive enough to describe planning problems in a computable form and restrictive and expressive enough to implement in a clinical system. It can also be effective for mobile apps, where intermittent communication requires a small footprint and an autonomous app. This approach can be used to incorporate overlapping capabilities of more specialized CIGs in medicine.
UNSTRUCTURED Displeasure with clinical decision support systems (CDSS) functionality is considered the primary challenge in CDSS development. A major difficulty in CDSS design is matching the functionality to correct and actual clinical workflow. Computer-Interpretable guidelines (CIG) are used to formalize medical knowledge in clinical practice guidelines (CPG) in a computable language, however, existing CIG frameworks require a specific interpreter for each language, hindering the ease of implementation and interoperability. This has led the authors to propose a different approach in terms of how clinical knowledge and data is represented and change the clinician’s perception of a CDSS. This approach was originally intended to create a readable and minimal syntax for a web CDSS for antenatal care guidelines, with improved human-computer interaction and enhanced usability by aligning the system behavior with clinical workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.