One of the most pressing issues with petascale analysis is the transport of simulation results data to a meaningful analysis. Traditional workflow prescribes storing the simulation results to disk and later retrieving them for analysis and visualization. However, at petascale this storage of the full results is prohibitive. A solution to this problem is to run the analysis and visualization concurrently with the simulation and bypass the storage of the full results. One mechanism for doing so is in transit visualization in which analysis and visualization is run on I/O nodes that receive the full simulation results but write information from analysis or provide run-time visualization. This paper describes the work in progress for three in transit visualization solutions, each using a different transport mechanism.
Due to power and I/O constraints associated with extreme scale scientific simulations, in situ analysis and visualization will become a critical component to scientific exploration and discovery. Current analysis and visualization options at extreme scale are presented in opposition: write files to disk for interactive, exploratory analysis, or perform in situ analysis to save data products about phenomena that a scientists knows about in advance. In this paper, we demonstrate extreme scale visualization of MPAS-Ocean simulations leveraging a third option based on Cinema, which is a novel framework for highly interactive, image-based in situ analysis and visualization that promotes exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.