The influence of the foaming temperature and carbon black content on the cure behavior and mechanical properties of natural rubber foams was investigated at five temperature zones by 5 o C interval and different feeding ratios of the carbon black. The physical properties of the foamed NRs were then measured as a function of the foaming temperature and carbon black content, respectively. The optimal temperature for vulcanization and foaming of NRs in this study was considered to be 165 o C where density of the foamed NR is lower than that at other four temperature zones. The thickness of each of the struts formed within the rubber matrix decreased with the increasing foaming temperature, while it increased with the increasing carbon black content, supporting the density characteristics. The tensile properties of the foamed NRs such as tensile strength, tear strength and modulus gradually increased with the increasing and carbon black content, while elongation at break decreased.
Differential scanning calorimetry (DSC) was applied to natural rubber (NR) and NR/recycled natural rubber (RNR)(NR/RNR) blend to understand and optimize the state of cure, which is based on the value of the exothermic reaction obtained in process of vulcanization. Swelling and mechanical data were investigated with the increase of cure time from 15 to 35 minutes with an interval of 5 minutes and compared with the DSC enthalpy data. With the increasing cure time, cure enthalpy was decreased and a negative, while cure enthalpy was a positive value in 35-NR and 35-NR/RNR when cure time was over 35 minutes due to the reversion. Swell index (Si) was gradually decreased but increased slightly in the case of both NR and NR/RNR cured for 35 minutes. The study also indicated that cure enthalpy data was very precise and fast to predict the cure state of the NR and NR/RNR blend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.