Objective: Water extract of temulawak (Curcuma xanthorrhizaRoxb.) contains curcumin, which known has antibacterial, antiinflammation, and antifungal activity so that it has potential used as wound healing. The purpose of this study was formulating gel of water extract of temulawak made by variation of hydroxypropyl methylcellulose (HPMC) and tween 80 concentrations and investigating the influence of formulations on physical characteristics and physical stabilities gel. Methods: Gel was made by variation of HPMC and tween 80 concentrations (3,00%: 1,00%; 5,00%: 1,00%; 3,00%: 2,00%; 5,00%; 2,00%). Gel preparations was evaluated the physical characeristics by organoleptic test, homogeneity test, pH, viscosity, spreadability, adhesiveness, and stability. The physical properties were analyzed by software Design Expert 9. Results: The results showed that HPMC has dominant influenced on viscosity, spreadability, and adhesiveness. HPMC and tween 80 have not influence on organoleptic, homogeneity, and pH of the gel. Optimum formula is HPMC 5,00% and tween 80 1,00%. Optimum formula is stable on organoleptic, homogeneity, pH, viscosity, and adhesiveness; however spreadability of gel is not stable during 3 mo storage. Conclusion: Variation of HPMC and tween 80 concentrations influenced viscosity, spreadability, and adhesiveness, while they were not influenced on organoleptic, homogeneity, and pH of gel. HPMC had dominant influenced on viscosity, spreadability, and adhesiveness gel.
Nausea, which often coexists with vomiting, is an uneasy sensation in the stomach caused by several factors. Oral domperidone is widely prescribed in nausea treatment. The low bioavailability of oral domperidone makes a patient take the drug more frequently, even though some patients have difficulty swallowing the drug when suffering nausea. Recently, the drug formulation development for transdermal delivery systems is expected to increase in the future. Practical and increase patient comfortable is the notable advantages of using transdermal dosage form. Domperidone is currently being studied into various pharmaceutical dosage forms with the transdermal route. This present article provides summaries of the constraints also the current formulation development of domperidone which shows the potential of domperidone in transdermal delivery.
Bioequivalence testing aims to ensure that the therapeutic performance of the drug is consistent and reproducible when it is administrated. Modeling and simulation in silico methods are currently performed to conduct virtual bioequivalence studies. Various computer simulation software is used to generate the simulation and model input data. This review summarizes the software used for predicting in vivo performance which supports the analysis of virtual bioequivalence testing. GastroPlus™ and SimCyp® are widely used platforms in generating data for virtual bioequivalence studies. The studies suggest that the validity procedure is necessary for modeling and simulation. The in silico method has become a valuable tool in bioequivalence studies as supporting extension of the biowaiver drug list and contributing to future drug development.
Compartmental modeling analysis was used to understand the transport mechanism of drugs in biological systems by computation presented as intercompartmental flows or material. This study was aimed to implement compartmental modeling analysis for in vitro permeation studies in transdermal delivery. The cumulative drug transported versus time were obtained based on the previous report and implemented the two structural different proposed models. WinSAAM software (Windows-based Simulation Analysis and Modeling-WinSAAM Project Group, University of Pennsylvania) was used to analyze data with compartmental analysis. The chosen models were selected through visual and numeric evaluation. The best model had been chosen and could figure out the drug transport kinetics in the biological system. The compartmental modeling approach was helpful used in understanding drug transport mechanisms in transdermal delivery and effectively estimate the drug transport parameter.
Pharmacokinetics studies of domperidone generally analyze plasma matrix samples. The present work aimed to develop and validate a rapid and simple reversed phase-HPLC method for quantifying domperidone in plasma matrices. The chromatographic method implemented: 1. Luna Phenomenex® C18 (250 mm × 4.6 mm i.d; 5 µm) column, 2. isocratic mobile phase mixture of phosphate buffer 0.02 M:acetonitrile (70:30, v/v) with a flow rate of 1 mL/min, 3. UV detection at 285 nm. Domperidone and propranolol hydrochloride (as internal standard) were extracted from the deproteinated plasma sample. The method linearity was 0.998 in the range concentration of 15–200 ng/mL. The percentage of accuracy error was between -8.49–4.31%, while the percentage coefficient variation of precision ranged between 5.11–14.24%. This proposed method was simple, rapid (separation time less than 10 min), and selective. The validation parameters responses satisfied the method's requirements to determine domperidone in a plasma sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.