Abstract. Google's operational flood forecasting system was developed to provide accurate real-time flood warnings to agencies and the public with a focus on riverine floods in large, gauged rivers. It became operational in 2018 and has since expanded geographically. This forecasting system consists of four subsystems: data validation, stage forecasting, inundation modeling, and alert distribution. Machine learning is used for two of the subsystems. Stage forecasting is modeled with the long short-term memory (LSTM) networks and the linear models. Flood inundation is computed with the thresholding and the manifold models, where the former computes inundation extent and the latter computes both inundation extent and depth. The manifold model, presented here for the first time, provides a machine-learning alternative to hydraulic modeling of flood inundation. When evaluated on historical data, all models achieve sufficiently high-performance metrics for operational use. The LSTM showed higher skills than the linear model, while the thresholding and manifold models achieved similar performance metrics for modeling inundation extent. During the 2021 monsoon season, the flood warning system was operational in India and Bangladesh, covering flood-prone regions around rivers with a total area close to 470 000 km2, home to more than 350 000 000 people. More than 100 000 000 flood alerts were sent to affected populations, to relevant authorities, and to emergency organizations. Current and future work on the system includes extending coverage to additional flood-prone locations and improving modeling capabilities and accuracy.
<p>Floods are among the most destructive natural hazards in the world. To reduce flood induced damages and casualties, streamflow forecasts should be as accurate as possible.</p><p>As of today, streamflow forecasts are usually made with either conceptual or process-based hydrological models. The problem these models usually have is that they perform best when calibrated for a specific basin, and performance degrades drastically if the models are used in places without historic streamflow measurements. To make things worse, some of the most devastating floods occur in developing and low-income countries, where historic records of streamflow measurements are scarce. Therefore, a central task for enhancing flood forecasts and helping local authorities to manage these areas is to provide high-quality streamflow forecasts in ungauged rivers. Although the IAHS dedicated an entire decade (2003-2012) to advance the problem of Prediction in Ungauged Basins the central goal remains largely a challenge.</p><p>In this talk, we will present a novel approach for tackling the problem of prediction in ungauged basins using a data-driven approach. More concretely, we show that the Long Short-Term Memory network (LSTM), which is a special type of a deep learning model, can serve as a generalizable rainfall-runoff simulation model. We will present recent results indicating that the LSTM gives on average better out-of-sample predictions (ungauged prediction) than e.g. the SAC-SMA in-sample (gauged) or the US National Water Model (Kratzert et al., 2019).</p><p>One place where these research results are already finding their way into operation is Google&#8217;s Flood Forecasting Initiative. The goal of this initiative is to provide (enhanced) flood warnings, where needed, starting with a pilot project in India. And as mentioned above, historic streamflow records in those regions are scarce, which motivates new and innovative approaches for enhanced streamflow forecasting.</p><p>References:</p><p>Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research, 55. https://doi.org/10.1029/2019WR026065, 2019.</p>
Abstract. Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper, we compare two strategies for ingesting near-real-time streamflow observations into long short-term memory (LSTM) rainfall–runoff models: autoregression (a forward method) and variational data assimilation. Autoregression is both more accurate and more computationally efficient than data assimilation. Autoregression is sensitive to missing data, however an appropriate (and simple) training strategy mitigates this problem. We introduce a data assimilation procedure for recurrent deep learning models that uses backpropagation to make the state updates.
Abstract. Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper we compare two strategies for ingesting near-real-time streamflow observations into Long Short-Term Memory (LSTM) rainfall-runoff models: autoregression (a forward method) and variational data assimilation. Autoregression is both more accurate and more computationally efficient than data assimilation. Autoregression is sensitive to missing data, however an appropriate (and simple) training strategy mitigates this problem.
High-quality datasets are essential to support hydrological science and modeling. Several CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) datasets exist for specific countries or regions, however these datasets lack standardization, which makes global studies difficult. This paper introduces a dataset called Caravan (a series of CAMELS) that standardizes and aggregates seven existing large-sample hydrology datasets. Caravan includes meteorological forcing data, streamflow data, and static catchment attributes (e.g., geophysical, sociological, climatological) for 6830 catchments. Most importantly, Caravan is both a dataset and open-source software that allows members of the hydrology community to extend the dataset to new locations by extracting forcing data and catchment attributes in the cloud. Our vision is for Caravan to democratize the creation and use of globally-standardized large-sample hydrology datasets. Caravan is a truly global open-source community resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.