One of the hallmarks of human intelligence is the ability to compose learned knowledge into novel concepts which can be recognized without a single training example. In contrast, current state-of-the-art methods require hundreds of training examples for each possible category to build reliable and accurate classifiers. To alleviate this striking difference in efficiency, we propose a task-driven modular architecture for compositional reasoning and sample efficient learning. Our architecture consists of a set of neural network modules, which are small fully connected layers operating in semantic concept space. These modules are configured through a gating function conditioned on the task to produce features representing the compatibility between the input image and the concept under consideration. This enables us to express tasks as a combination of subtasks and to generalize to unseen categories by reweighting a set of small modules. Furthermore, the network can be trained efficiently as it is fully differentiable and its modules operate on small sub-spaces. We focus our study on the problem of compositional zero-shot classification of objectattribute categories. We show in our experiments that current evaluation metrics are flawed as they only consider unseen object-attribute pairs. When extending the evaluation to the generalized setting which accounts also for pairs seen during training, we discover that naïve baseline methods perform similarly or better than current approaches. However, our modular network is able to outperform all existing approaches on two widely-used benchmark datasets. * Work done during an internship at Facebook AI Research. Proposed dataset splits and code available here:
Autism spectrum condition (ASC) is primarily diagnosed by behavioural symptoms including social, sensory and motor aspects. Although stereotyped, repetitive motor movements are considered during diagnosis, quantitative measures that identify kinematic characteristics in the movement patterns of autistic individuals are poorly studied, preventing advances in understanding the aetiology of motor impairment, or whether a wider range of motor characteristics could be used for diagnosis. The aim of this study was to investigate whether data-driven machine learning based methods could be used to address some fundamental problems with regard to identifying discriminative test conditions and kinematic parameters to classify between ASC and neurotypical controls. Data was based on a previous task where 16 ASC participants and 14 age, IQ matched controls observed then imitated a series of hand movements. 40 kinematic parameters extracted from eight imitation conditions were analysed using machine learning based methods. Two optimal imitation conditions and nine most significant kinematic parameters were identified and compared with some standard attribute evaluators. To our knowledge, this is the first attempt to apply machine learning to kinematic movement parameters measured during imitation of hand movements to investigate the identification of ASC. Although based on a small sample, the work demonstrates the feasibility of applying machine learning methods to analyse high-dimensional data and suggest the potential of machine learning for identifying kinematic biomarkers that could contribute to the diagnostic classification of autism.
No abstract
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.