To investigate frontal lobe white matter in children with autism spectrum disorder (ASD), we performed diffusion tensor imaging (DTI) in 50 ASD children (mean age: 57.5 ± 29.2 months, 43 males) and 16 typically developing children (mean age: 82.1 ± 41.4 months, 11 males). The apparent diffusion coefficient (ADC) was significantly higher for whole frontal lobe (P = 0.011), long (P < 0.001) and short range (P = 0.0126) association fibers in ASD group. There was a trend toward statistical significance in the fractional anisotropy (FA) of whole frontal lobe fibers (P = 0.11). FA was significantly lower in ASD group for short range fibers (P = 0.0031) but not for long range fibers (P = not significant [NS]). There was no between-group difference in the number of frontal lobe fibers (short and long) (P = NS). The fiber length distribution was significantly more positively skewed in the normal population than in the ASD group (P < 0.001). The long range association fibers of frontal lobe were significantly longer in ASD group (P = 0.026 for both left and right hemispheres). Abnormal frontal FA and ADC may be due to white matter organization abnormalities in ASD. Lack of evidence for excessive short range connectivity in ASD in this study may need to be re-examined with future advances in DTI technology.
Major frontal lobe tracts and corpus callosum (CC) were investigated in 32 children with autism spectrum disorder (ASD, mean age: 5 years), 12 nonautistic developmentally impaired children (DI, mean age: 4.6 years), and 16 typically developing children (TD, mean age: 5.5 years) using diffusion tensor imaging tractography and tract-based spatial statistics. Various diffusion and geometric properties were calculated for uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFO), arcuate fasciculus (AF), cingulum (Cg), CC, and corticospinal tract. Fractional anisotropy was lower in the right UF, right Cg and CC in ASD and DI children; in right AF in ASD children; and in bilateral IFO in DI children, compared with TD children. Apparent diffusion coefficient was increased in right AF in both ASD and DI children. The ASD group showed shorter length of left UF and increased length, volume, and density of right UF; increased length and density of CC; and higher density of left Cg, compared with the TD group. Compared with DI group, ASD group had increased length, volume, and density of right UF; higher volume of left UF; and increased length of right AF and CC. Volume of bilateral UF and right AF and fiber density of left UF were positively associated with autistic features.
The standardized uptake value (SUV) and the slope of the Patlak plot ( K) have both been proposed as indices to monitor the progress of disease during cancer therapy. Although a good correlation has been reported between SUV and K, they are not equivalent, and may not be equally affected by metabolic changes occurring during disease progression or therapy. We wished to compare changes in tumor SUV with changes in K during serial positron emission tomography (PET) scans for monitoring therapy. Thirteen patients enrolled in a protocol to treat renal cell carcinoma metastases were studied. Serial dynamic fluorodeoxyglucose (FDG) PET scans and computed tomography (CT) and magnetic resonance (MR) scans were performed once prior to treatment, once at 36+/-2 days after the start of treatment, and (in 7/13 subjects, 16/27 lesions) a third time at 92+/-9 days after the start of treatment. This resulted in a total of 33 scans, and 70 tumor Patlak and SUV values (one value for each lesion at each time point). SUV and K were measured over one to four predefined tumors/patient at each time point. The input function was obtained from regions of interest over the heart, combined, if necessary, with late blood samples. Over all tumors and scans, SUV and K correlated well ( r=0.97, P<0.0001). However, change in SUV with treatment over all tumor scan pairs was much less well correlated with the corresponding change in K ( r=0.73, P<0.0001). The absolute difference in % change was outside the 95% confidence limits expected from previous variability studies in 6 of 43 pairs of tumor scans, and greater than 50% in 2 of 43 tumor scan pairs. In four of the six cases, the two indices predicted opposing therapeutic outcomes. Similar results were obtained for SUV normalized by body weight or body surface area and for SUVs using mean or maximum count. Changes in CT and MR tumor cross-product dimensions correlated poorly with each other ( r=0.47, P=NS), and so could not be used to determine the "correct" PET index. Absolute values of SUV and K correlated well over the patient population. However, when monitoring individual patient therapy serially, large differences in the % changes in the two indices were occasionally found, sometimes sufficient to produce opposing conclusions regarding the progression of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.