TGF-beta induces vascular endothelial growth factor (VEGF), a potent angiogenic factor, at the transcriptional and protein levels in mouse macrophages. VEGF secretion in response to TGF-beta1 is enhanced by hypoxia and by overexpression of Smad3/4 and hypoxia-inducible factor-1alpha/beta (HIF-1alpha/beta). To examine the transcriptional regulation of VEGF by TGF-beta1, we constructed mouse reporters driven by the VEGF promoter. Overexpression of HIF-1alpha/beta or Smad3/4 caused a slight increase of VEGF promoter activity in the presence of TGF-beta1, whereas cotransfection of HIF-1alpha/beta and Smad3/4 had a marked effect. Smad2 was without effect on this promoter activity, whereas Smad7 markedly reduced it. Analysis of mutant promoters revealed that the one putative HIF-1 and two Smad-binding elements were critical for TGF-beta1-induced VEGF promoter activity. The relevance of these elements was confirmed by chromatin immunoprecipitation assay. p300, which has histone acetyltransferase activity, augmented transcriptional activity in response to HIF-1alpha/beta and Smad3/4, and E1A, an inhibitor of p300, inhibited it. TGF-beta1 also increased the expression of fetal liver kinase-1 (Flk-1), a major VEGF receptor, and TGF-beta1 and VEGF stimulated pro-matrix metalloproteinase 9 (MMP-9) and active-MMP-9 expression, respectively. The results from the present study indicate that TGF-beta1 can activate mouse macrophages to express angiogenic mediators such as VEGF, MMP-9, and Flk-1.
BackgroundCinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties. The goal of this study is to investigate the in vivo and in vitro inhibitory effect of cinnamon water extract (CWE) on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α and its underlying intracellular mechanisms.MethodsCWE was orally administrated to mice for 6 days prior to intraperitoneal injection of LPS. Serum levels of TNF-α and interleukin (IL)-6 were determined 1 hour after LPS stimulation. Peritoneal macrophages from thioglycollate-injected mice were isolated and assayed for viability, cytokine expression and signaling molecules upon LPS stimulation. CWE was further fractioned according to molecular size, and the levels of total polyphenols and biological activities of each fraction were measured.ResultsThe oral administration of CWE to mice significantly decreased the serum levels of TNF-α and IL-6. CWE treatment in vitro decreased the mRNA expression of TNF-α. CWE blocked the LPS-induced degradation of IκBα as well as the activation of JNK, p38 and ERK1/2. Furthermore, size-based fractionation of CWE showed that the observed inhibitory effect of CWE in vitro occurred in the fraction containing the highest level of total polyphenols.ConclusionsTreatment with CWE decreased LPS-induced TNF-α in serum. In vitro inhibition of TNF-α gene by CWE may occur via the modulation of IκBα degradation and JNK, p38, and ERK1/2 activation. Our results also indicate that the observed anti-inflammatory action of CWE may originate from the presence of polyphenols.
Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120 function as transcriptional activators of anthocyanin accumulation in both Arabidopsis and poplar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.