BackgroundCaesalpinia sappan L. extracts exhibit great therapeutic potential, and have been shown to have analgesic and anti-inflammatory properties. This study aimed to understand the anti-rheumatoid activity of brazilin that was isolated from ethyl acetate extract of C. sappan L. The evaluations were conducted in mice with type-II collagen-induced arthritis (CIA).MethodsBrazilin was purified via preparative HPLC and identified by mass spectrometry and 1H/13C NMR analysis. DBA/1J mice were divided into four groups (n = 10). Three groups of mice received intradermal injections of inducer bovine type-II collagen (BTIIC; 2 mg/ml in 0.05 ml acetic acid) and 0.1 ml of booster complete Freund’s adjuvant (CFA). A second injection of BTIIC with booster incomplete Freund’s adjuvant (ICFA) was given subsequently after 21 days. On 22nd day, purified brazilin (10 mg/kg body weight) or the disease-modifying anti-rheumatic drug methotrexate (3 mg/kg body weight) was administered intraperitoneally daily or every three days for 21 days, respectively to two groups of mice. At the 42nd day, mice sera were collected, and the levels of pro-inflammatory cytokines and stress enzyme markers in serum were measured using standard immunoassay methods. The microstructure and morphometric analyses of the bones were assessed using high-resolution microfocal computed tomography.ResultsBrazilin isolated from C. sappan reduced the arthritis index score and the extent of acute inflammatory paw edema in CIA-mice. The bone mineral density was significantly (p < 0.05) lower in only-CIA mice, and appeared to increase commensurate with methotrexate and brazilin administration. Brazilin prevented joint destruction, surface erosion, and enhanced bone formation as revealed by microstructural examinations. Brazilin markedly attenuated mouse CIA and reduced the serum levels of inflammatory cytokines including TNF-α, IL-1β, and IL-6.ConclusionsBrazilin purified from C. sappan L. shows protective efficacy in CIA mouse, and may be useful to treat chronic inflammatory disorders including rheumatoid arthritis.
The Korean traditional seafood jeotgal is consumed directly or as an additive in other foods to improve flavor or fermentation efficiency. Saeujot, made from salted and fermented tiny shrimp (SFS; Acetes japonicus), is the best-selling jeotgal in Korea. In this study, we reveal the microbial diversity and dynamics in naturally fermented shrimp by denaturing gradient gel electrophoresis (DGGE). The population fingerprints of the predominant microbiota and its succession were generated by DGGE analysis of universal V3 16S rDNA polymerase chain reaction (PCR) amplicons. Overall, 17 strains were identified from sequencing of 30 DGGE bands. The DGGE profiles showed diverse bacterial populations in the sample, throughout the fermentation of SFS. Staphylococcus equorum, Halanaerobium saccharolyticum, Salimicrobium luteum, and Halomonas jeotgali were the dominant bacteria, and their levels steadily increased during the fermentation process. Certain other bacteria, such as Psychrobacter jeotgali and Halomonas alimentaria appeared during the early-fermentation process, while Alkalibacterium putridalgicola, Tetragenococcus muriaticus, and Salinicoccus jeotgali appeared during the late-fermentation process. The members of the order Bacillales were found to be predominant during the fermentation of SFS. Furthermore, S. equorum was identified as the dominant bacterial isolate by the traditional method of culturing under aerobic and facultative anaerobic conditions. We expect that this information will facilitate the design of autochthonous starter cultures for the production of SFS with desired characteristic sensory profiles and shorter ripening times.
Mammalian hyaluronidases (HAase, EC 3.2.1.35) are a family of enzymes that hydrolyse N-acetyl-Dglucosamine (1-4) glycosidic bonds in hyaluronic acid, which is found in skin, cartilage, and the vitreous body. Although HAase is generally present in an inactive form within subcellular lysosomes, it is released in an active form in some types of inflammation and tissue injuries, thereby contributing to the inflammatory response. The HAase inhibitory activity of 500 methanolic extracts of 500 species from medicinal plants was screened using a Morgan microplate assay. The viscosity of the hyaluronic acid was measured with an Ubbelohde viscometer. Three MeOH extracts inhibited more than 50% of HAase activity at a concentration of 2 mg/ml. HAase inhibitory rates (%) of three species of medicinal plant extracts, Styrax japonica, Deutzia coreana, and Osmanthus insularis were 57.28%, 53.50%, and 53.19%, respectively. The rate of HAase inhibition of the extracts was dose dependent. In the HAase inhibitory assay using the Ubbelohde viscometer, the results were in good agreement with the results from the Morgan assay. The results suggest that HAase inhibitory compounds extracted from the stem of S. japonica, D. coreana, and O. insularis might be multifunctional and prevent the degradation of hyaluronic acid and the induction of allergic reactions and inflammation.
The aim of this study was to investigate the effect of water-soluble sulfated β-glucan (SBG) obtained from Ganoderma lucidum mycelia on the antihyperlipidemic and serum lipid levels in high-fat diet-induced obese rats. Five-week-old male Sprague-Dawley rats were fed a high-fat diet for two weeks to induce obesity. They were ten divided into five groups-normal control diet group (NC), high-fat control diet group (HC), high-fat diet and 200 mg/kg of SBG group (HC-HSBG), high-fat diet and 20 mg/kg of SBG group (HC-LSBG), and high-fat diet and 20 mg/kg of lovastatin group (HC-Lov)-and fed one of five diets for two more weeks. Although food intake and final body weight after four weeks of SBG consumption were similar in the five experimental groups, food efficiency ratio was higher in the high-fat diet groups(2, 3, 4, and 5) than in the NC group. In evaluating the hematological parameters of the rats, the neutrophil and monocyte ratios were higher in the HC-HSBG, HC-LSBG, and HC-Lov groups than in the HC group. Serum lipid profiles were analyzed after a 12 hr fast at the end of the study. Total cholesterol, triglyceride, and low-density lipoprotein cholesterol (LDL-C) levels were significantly lower in the HC-HSBG and HC-LSBG groups than in the HC group. These results suggest that chemically engineered sulfated mushroom β-glucan (SBG) might contribute to lower cholesterol and lipid levels in blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.