Recently, aptamers have attracted the attention of many scientists, because they not only have all of the advantages of antibodies, but also have unique merits, such as thermal stability, low cost, and unlimited applications. In this review, we present the reasons why aptamers are known as alternatives to antibodies. Furthermore, several types of in vitro selection processes, including nitrocellulose membrane filtration, affinity chromatography, magnetic bead, and capillary electrophoresis-based selection methods, are explained in detail. We also introduce various applications of aptamers for the diagnosis of diseases and detection of small molecules. Numerous analytical techniques, such as electrochemical, colorimetric, optical, and mass-sensitive methods, can be utilized to detect targets, due to convenient modifications and the stability of aptamers. Finally, several medical and analytical applications of aptamers are presented. In summary, aptamers are promising materials for diverse areas, not just as alternatives to antibodies, but as the core components of medical and analytical equipment.
A metal–organic framework (MOF) having superprotonic conductivity, MOF‐808, is prepared by modulating the binding mode of the sulfamate (SA) moieties grafted onto the metal clusters. The activation of the SA‐grafted MOF‐808 at 150 °C changes the binding mode of the grafted SA from monodentate to bridging bidentate, thus converting the neutral amido (‐S−NH2) moiety of the grafted SA to the more acidic cationic sulfiliminium (‐S=NH2+) moiety. Further, the acidic sulfiliminium moiety of MOF‐808‐4SA‐150 results in more efficient proton conduction than the amido moiety of MOF‐808‐4SA‐60. At 60 °C and 95 % relative humidity, MOF‐808‐4SA‐150 is found to have a proton conductivity of 7.89×10−2 S cm−1, which is more than 30‐times higher than that of MOF‐808‐4SA‐60. Moreover, this superprotonic conductivity is well maintained over 1000 cycles of conductivity measurements and for similar cyclic measurements each day for seven days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.