Cardiac troponin I (cTnI) is well-known as a promising biomarker for the early diagnosis of acute myocardial infarction (AMI). In this work, single-stranded DNA aptamers against cTnI were identified by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) method. The aptamer candidates exhibited a high selectivity and sensitivity toward both cTnI and the cardiac Troponin complex. The binding affinities of each aptamer were evaluated based on their dissociation constants (Kd) by surface plasma resonance. The Tro4 aptamer that had the highest binding capacity to cTnI showed a very low Kd value (270 pM) compared with that of a cTnI antibody (20.8 nM). Furthermore, we designed a new electrochemical aptasensor based on square wave voltammetry using ferrocene-modified silica nanoparticles. The developed aptasensor demonstrated an excellent analytical performance for cTnI with a wide linear range of 1-10 000 pM in a buffer and a detection limit of 1.0 pM (24 pg/mL; S/N = 3), which was noticeably lower than the cutoff values (70-400 pg/mL). The specificity of the aptamers was also examined using nontarget proteins, demonstrating that the proposed sensor responded to only cTnI. In addition, cTnI was successfully detected in a human serum albumin solution. On the basis of the calibration curve that was constructed, the concentrations of cTnI in a solution supplemented with human serum were effectively measured. The calculated values correlated well with the actual concentrations of cTnI. It is anticipated that the highly sensitive and selective aptasensor for cTnI could be readily applicable for the accurate diagnosis of AMI.
A gold nanoparticle based dual fluorescence-colorimetric method was developed as an aptasensor to detect ampicillin using its single-stranded DNA (ssDNA) aptamer, which was discovered by a magnetic bead-based SELEX technique. The selected aptamers, AMP4 (5'-CACGGCATGGTGGGCGTCGTG-3'), AMP17 (5'-GCGGGCGGTTGTATAGCGG-3'), and AMP18 (5'-TTAGTTGGGGTTCAGTTGG-3'), were confirmed to have high sensitivity and specificity to ampicillin (K(d), AMP7 = 9.4 nM, AMP17 = 13.4 nM, and AMP18 = 9.8 nM, respectively). The 5'-fluorescein amidite (FAM)-modified aptamer was used as a dual probe for observing fluorescence differences and color changes simultaneously. The lower limits of detection for this dual method were a 2 ng/mL by fluorescence and a 10 ng/mL by colorimetry for ampicillin in the milk as well as in distilled water. Because these detection limits were below the maximum residue limit of ampicillin, this aptasensor was sensitive enough to detect antibiotics in food products, such as milk and animal tissues. In addition, this dual aptasensor will be a more accurate method for antibiotics in food products as it concurrently uses two detection methods: fluorescence and colorimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.