Vertically aligned, single crystalline ZnO nanorods with a high packing density and diameter of B60 nm have been successfully synthesized via a low-temperature hydrothermal route on glass substrates pre-deposited with a ZnO seeding layer. The seeding layer exhibits an epitaxial effect on the growth and alignment of the ZnO nanorods. This epitaxial effect can arise from two considerations, namely the crystalline orientation and surface roughness of the seeding layer, which can be controlled by the curing temperature. The ZnO seeding layer that was cured at 3501C exhibited a preferred (0002) crystalline orientation of wurtzite hexagonal structure and a low surface roughness. It was demonstrated to promote the vertical growth of ZnO nanorods. The ZnO nanorods grew in an almost linear relationship with hydrothermal time up to 8 h, but thereafter started to dissolve as the reaction time extended beyond 8 h, due to competition from the homogeneous nucleation of ZnO microparticles in the solution.
Ta2O5/TaOx heterostructure has become a leading oxide layer in memory cells and/or a bidirectional selector for resistive random access memory (RRAM). Although atomic layer deposition (ALD) was found to be uniquely suitable for depositing uniform and conformal films on complex topographies, it is hard to use ALD to grow suboxide TaOx layer. In this study, tantalum oxide films with a composition of Ta2O5 were grown by ALD. Using Ar+ ion irradiation, the suboxide was formed in the top layer of Ta2O5 films by observing the Ta core level shift toward lower binding energy with angle-resolved X-ray photoelectron spectroscopy. By controlling the energy and irradiation time of an Ar+ ion beam, Ta2O5/TaOx heterostructure can be reliably produced on ALD films, which provides a way to fabricate the critical switching layers of RRAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.