Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction.
Impacts of massive, highly charged glycerol clusters (≳10(6) Da, ≳ ± 100 charges) have been used to eject intact charged molecules of peptides, lipids, and small proteins from pure solid samples, enabling imaging using these ion species in a time-of-flight secondary ion microscope with few-micrometer spatial resolution. Here, we report mass spectra and useful ion yields (ratio of intact charged molecules detected to molecules sputtered) for several molecular species-two peptides, bradykinin and angiotensin II; two lipids, phosphatidylcholine and sphingomyelin; Irganox 1010 (a detergent); insulin; and rhodamine B-and show that useful ion yields are high enough to enable bioimaging of peptides and lipids in biological samples with few-micrometer resolution and acceptable signals. For example, several hundred molecular ion counts should be detectable from a 3 × 3 μm(2) area of a pure lipid bilayer given appropriate instrumentation or tens of counts from a minor constituent of such a layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.