This study describes the numerical implementation of accurate and fully coupled physical models in order to investigate the sensitivity of Surface Acoustic Wave (SAW) devices using the magnetoelastic interaction with an external magnetic field. The model was first validated using experimental data previously published by Kadota et al., obtained with SAW resonators based on quartz substrates and nickel InterDigital Transducers (IDTs). The model was then used to optimize the geometry of a new magnetostrictive-piezoelectric layered structure (Ni/ZnO/IDT/LiNbO3), regarding its sensitivity to the magnetic field intensity. The optimized structure was designed and fabricated and experimental results show a good correlation with the numerical modeling. Simulations also show that if alumina is used instead of ZnO, the Ni/Al2O3/IDT/LiNbO3 structure exhibits a sensitivity that is 9 times higher than the one based on ZnO.
International audienceIn order to generate surface acoustic waves (SAW) and waveguiding layer acoustic waves (WLAW) simultaneously, a multilayer structure of AlN/ZnO/diamond has been proposed. This structure has been investigated theoretically (two-dimensional finite element method) and experimentally. The nature of the excited modes and their order were identified by modeling and confirmed experimentally by measuring the frequency response of the device in the air and in contact with the liquid. The demonstrated structure can be used to realize a packageless sensor or resonator, using the WLAW alone. A temperature compensated gas or liquid sensor can also be realized by combined usage of the SAW and the WLAW
A temperature compensated magnetic field sensor based on the combination of CoFeB ferromagnetic thin films and Quartz/ZnO Love waveguide platform is developed and optimized. The Love wave is a shear horizontal guided wave and therefore provides an optimal interaction with magnetisation in the magneto-elastic thin film resulting in higher acoustic wave magneto-elastic coupling compared to the conventional Rayleigh wave based devices. ST-cut Quartz was chosen as substrate, ZnO as insulating layer for Love wave generation and temperature coefficient of frequency (TCF) compensation and CoFeB as the magnetostrictive layer sensitive to magnetic field. Experimental results show a magneto-acoustic sensitivity of 15.53 MHz/T with almost zero TCF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.