Insulation systems for buildings and structures imply the use of efficient thermal insulation products based on mineral wool, expanded polystyrene, expanded polyurethane, etc. For a long time, products from non-cross-linked expanded polyethylene were used as insulation for pipelines, reflective insulation, protection against air infiltration, etc. Modern technologies and engineering solutions allowed widening the field of application of non-cross-linked expanded polyethylene (NXLPE) as a construction insulation material. In particular, we can consider a complex of insulation systems for walls, floors and a pitched roof, which allows to form a fully insulating shell of a low-rise building, e.g. a cottage. The novelty of the patented technology Tepofol® and that of the material concerned in comparison with the known solutions is the development of a rolled material based on NXLPE (20 to 150 mm thick) with a lock joint, as well as the technology of seamless connection of individual heat-insulating cloths. The rolls of NXLPE are mechanically fixed to the frame and connected with the lock. One of the advantages of expanded polyethylene, which only few insulating materials possess, is the possibility of forming seamless insulating shells. The article considers a number of insulation systems based on the use of products from expanded polyethylene. In particular, these are the systems of insulation of the walls of frame buildings, the insulation of floors, as well as the insulation of logistics facilities and hangars.
The article presents the results of the implementation of promising areas of construction and construction of low-rise buildings. The problems of improving the environmental safety and financial stability of agricultural construction through the implementation of effective systems that provide energy conservation, the creation of comfortable conditions in the rooms are considered. It is noted that a factor that has been given special attention in recent years is the environmental safety of the materials used and the reduction of the negative load on the environment of systems using these materials. The article provides the rationale that the heat-efficient system should not only be based on the use of materials with low thermal conductivity, but should also suggest a reasonable minimization of the joints between the products included in the insulation sheath and between products and structures. In constructions with the use of polyethylene foam, seamless insulating sheath is formed, which has high thermal resistance. The low vapor and wind permeability and moisture conductivity of polyethylene foam makes it possible to dispense with the construction without additional vapor barrier and wind protection, which improves the performance of the casing and its durability due to the reduction in the complexity of manufacturing wall structures.
Insulation systems of building structures involve the solution of the following group of tasks: creation of favorable conditions for the work of structural elements and construction as a whole; optimization of heat losses through the insulation shell; creation of comfortable conditions in the room. Such a system would function normally if effective thermal insulation, including polyethylene, were used. The price of polyethylene foam can be reduced without prejudice to the properties in the case of the use of secondary polyethylene foam. The article presents the results of experimental studies, the purpose of which is to optimize the composition of polyethylene foam with the addition of secondary polyethylene, the formation of methods of selection of its composition and the development of systems for the application of products based on polyethylene foam. The article presents the main provisions of the method of analytical optimization, which allows to significantly reducing the material and time costs of processing the results of the experiment. The article deals with aspects of the implementation of construction systems using products based on polyethylene foam in terms of minimizing heat loss through the contact areas. Mandatory criteria for the construction and implementation of insulation systems are safety conditions, including both structural safety (including maintenance-free cycle) and fire safety.
The applying of local building materials is an effective contribution to the savings of mineral resources, which are used for the production of basic building materials. Clay and gypsum compositions are the local raw materials in many regions of the country and some neighboring countries. The article discusses the method for determining the clay fraction in the clay and gypsum composition, as well as the method for assessing the rheological characteristics of the plaster mixtures for interior work based on clay and gypsum binder. It was established that the content of the clay fraction in the studied clay and gypsum composition is in the range of 30–32%. Plaster mixtures based on clay and gypsum binder can be considered as optimal compositions under the following conditions. The grade of mobility is not less than PK3 (8–12 cm) in cone penetration test, the ultimate shear stresses in the first seconds of the thixotropic hardening ensure no runoff for the adjusted thickness of the applied layer. With the mentioned mobility, the “creeping” on the concrete surface is 10% and less, and the “creeping” on the brick surface is no more than 5%. The allowable water-solid ratio is 0,46–0,50.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.