Electricity markets provide valuable data for regulators, operators, and investors. The use of machine learning methods for electricity market data could provide new insights about the market, and this information could be used for decision-making. This paper proposes a tool based on multi-output regression method using support vector machines (SVR) for LMP forecasting. The input corresponds to the active power load of each bus, in this case obtained through Monte Carlo simulations, in order to forecast LMPs. The LMPs provide market signals for investors and regulators. The results showed the high performance of the proposed model, since the average prediction error for fitting and testing datasets of the proposed method on the dataset was less than 1%. This provides insights into the application of machine learning method for electricity markets given the context of uncertainty and volatility for either real-time and ahead markets.
The optimal power flow is an important tool for power system planning and power system operation. It is used in a 24-hour period to find an economic dispatch of generating units considering network restrictions. The optimal power flow provides valuable information about the operation cost, the transmission flows, the generation and the congestion in the system. This information is used by generators, planners, operators and regulators in order to analyze and take decisions about the system at short and long term. The first one corresponds to the information for the operation. The second one corresponds to the information for the planning. This paper proposes a detailed optimal power flow formulation looking for a minimum cost of generation considering wind generation. Five solvers (CBC, CLP, CPLEX, Gurobi and GLPK.) have been used in order to compare differences between them. These solvers are commonly used to solve the multiperiod DC optimal power flow. An IEEE-24 test system is used to compare the solutions provided by the solvers. The findings reveal significant differences between the solvers when they are used to solve the IEEE-24 test system. Additionally, the computing time for each solver is reported. The solvers CPLEX and Gurobi show the lowest computational time to find a solution.
Power grids all over the world are transitioning towards a decentralized structure. Under such a transition, blockchain technology is emerging as a potential solution for technical, deployment and decentralization issues, given its security, integrity, decentralized nature and required infrastructure. Moreover, blockchain technology offers excellent features like non-repudiation and immutability which makes it a promising application for DER integration and management on reliability factors. In this paper, a comprehensive review of blockchain applications for DER management and integration is presented. First, a blockchain-based literature review of research activities in the DER integration area and related tasks including entrepreneurial efforts is carried out. Next, the different opportunities and challenges of DER integration and management in power grids, i.e., centralization, regulatory support, development costs are discussed. Finally, some key research challenges and opportunities of including blockchain technology to DER integration and management issues are presented.INDEX TERMS Blockchain, Distributed energy resources (DER), Distributed ledger technologies, Consensus algorithms.
The integration and management of distributed energy resources (DERs), including residential photovoltaic (PV) production, coupled with the widespread use of enabling technologies such as artificial intelligence, have led to the emergence of new tools, market models, and business opportunities. The accurate forecasting of these resources has become crucial to decision making, despite data availability and reliability issues in some parts of the world. To address these challenges, this paper proposes a deep and machine learning-based methodology for PV power forecasting, which includes XGBoost, random forest, support vector regressor, multi-layer perceptron, and LSTM-based tuned models, and introduces the ConvLSTM1D approach for this task. These models were evaluated on the univariate time-series prediction of low-volume residential PV production data across various forecast horizons. The proposed benchmarking and analysis approach considers technical and economic impacts, which can provide valuable insights for decision-making tools with these resources. The results indicate that the random forest and ConvLSTM1D model approaches yielded the most accurate forecasting performance, as demonstrated by the lowest RMSE, MAPE, and MAE across the different scenarios proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.