Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in ⟨331⟩ orientations as opposed to ⟨112⟩ epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the ⟨110⟩ orientation of both CdS and CdTe. It is the direction orthogonal to this ⟨110⟩ that becomes different, being ⟨116⟩ for CdTe and ⟨111⟩ for CdS, respectively. Missing CdTe-{110} planes are found along the ⟨110⟩ axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In the orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd0.96Zn0.04Te films are deposited on GaAs. Analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.
Molecular dynamics simulations were used to catalogue atomic scale structures of CdTe films grown on eight wurtzite (wz) and zinc-blende (zb) CdS surfaces. Polytypism, grain boundaries, dislocations and other film defects were detected. Dislocation lines were distributed in three distinct ways. For the growths on the wz {0001} and zb {111} surfaces, dislocations were found throughout the epilayers and formed a network at the interface. The dislocations within the films grown on the wz {1 100}, wz {112 0}, zb {1 10}, zb {010}, and zb { 1 } surfaces formed an interface network and also threaded from the interface towards the film's surface. In contrast, the growth on the zb {112 } surface only had dislocations localized to the interface. This film exhibited a different orientation from the substrate to reduce the lattice mismatch strain energies, and therefore, its misfit dislocation density. Our study indicates that the substrate orientation could be utilized to modify the morphology of dislocation networks in lattice mismatched multi-layered systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.