Several previous studies have investigated the effects of heat treatment on the chemical composition, along with the physical and mechanical properties, of wood from various species. However, the effects of these property changes upon the machining properties and surface quality of machined wood have been studied much less. The main goal of this work was to investigate the comparative cutting power consumption during milling and the resulting surface roughness of heat-treated and untreated beech wood (Fagus sylvatica L.). Several cutting regimes were tested by combining different values of rotation speed, feed speed, and cutting depth. The cutting power and the processing roughness were assessed and compared. The results clearly showed that the cutting power involved in the milling of heat-treated beech wood was up to 50% lower than that of untreated wood, but the processing roughness was slightly higher.
This study applied response surface methodology for modeling and optimizing heat-treated wood dowel joints, the most used joint in furniture construction. The factors examined were dowel length, dowel diameter, and adhesive consumption. The bending moment capacity of the joints loaded in compression or tension were the responses. The load was applied at a constant speed until a major separation between the two parts occurred. To figure out the bending moment capacity, the ultimate failure loads and the moment arms were obtained during testing the joints. The joints were tested by using a universal testing machine. A two-factor interaction model was established to describe the relationship between the factors and the responses. An analysis of variance was employed to test the significance of the developed mathematical model. The dowel length, dowel diameter, and adhesive consumption had significant effects on the bending moment capacity of the heat-treated dowel joints. The dowel length was the main factor that affected the bending moment capacity of the heat-treated dowel joints.
This paper presents experimental research on the Computer Numerical Control (CNC) routing of a traditional motif collected from Ţara Bârsei (Transylvania region) using two methods, namely, engraving (Engrave) and carving (V-Carve). The analysis of the CNC router processes includes the calculation of the path lengths, an assessment of the processing time and wood mass loss, and an evaluation of the tool wearing by investigating the tool cutting edge on a Stereo Microscope NIKON SMZ 18 before and after processing the ornament on wood. An aesthetic evaluation of the ornament routed on wood, using both the engraving and carving methods, is also conducted, whilst a microscopic analysis of the processed areas highlights the defects that occurred on the wood surface depending on the tool path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.