Malaria has a significant impact on the lives of many in Ghana. It is one of the key causes of mortality and morbidity, resulting in 32.5% of outpatient visits and 48.8% of under 5-year-old hospital admissions. Future climate change may impact on this risk. This study aims at estimating the impact of climate variables and health facilities on malaria prevalence in Ghana using regional data from January 2012 to May 2017. This study links data at a regional level on malaria cases with weather data to evaluate the impact that changes in weather may have on malaria prevalence in Ghana. The results of fixed-effect modelling show that the maximum temperature has a statistically significant negative impact on malaria in the context of Ghana, and rainfall with a lag of two months has a positive statistically significant impact. Adapting to climate change in Ghana requires a better understanding of the climate-malaria relationship and this paper attempts to bridge this gap.
The benefit of PARP inhibitor olaparib in relapsed and advanced high-grade serous ovarian carcinoma (HGSOC) is well established especially in BRCA1/2 mutation carriers. Identification of additional biomarkers can help expand the population of patients most likely to benefit from olaparib treatment. To identify candidate markers of olaparib response we analyzed genomic and in vitro olaparib response data from two independent groups of cancer cell lines. Using pan-cancer cell lines (n = 896) from the Genomics of Drug Sensitivity in Cancer database, we applied linear regression methods to identify statistically significant gene predictors of olaparib response based on mRNA expression. We then analyzed whole exome sequencing and mRNA gene expression data from our collection of 18 HGSOC cell lines previously classified as sensitive, intermediate, or resistant based on in vitro olaparib response for mutations, copy number variation and differential expression of candidate olaparib response genes. We identify genes previously associated with olaparib response (SLFN11, ABCB1), and discover novel candidate olaparib sensitivity genes with known functions including interaction with PARP1 (PUM3, EEF1A1) and involvement in homologous recombination DNA repair (ELP4). Further investigations at experimental and clinical levels are required to validate novel candidates, and ultimately determine their efficacy as potential biomarkers of olaparib sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.