Copper nanowires (Cu NWs) are suitable material as an electrode for flexible, stretchable and wearable devices due to their excellent mechanical properties, high transparency, good conductivity, and low cost, but oxidation problem limits their practical use and application. In order to use Cu NWs as an electrode for advanced flexible, stretchable and wearable devices attached directly to the skin, the influence of the body temperature on the oxidation of Cu NWs needs to be investigated. In this paper, the oxidation behavior of Cu NWs at high temperature (more than 80 °C) as well as body temperature is studied which has been remained largely questionable to date, and an effective encapsulation method is proposed to prevent the oxidation of Cu NWs electrode in the range of body temperatures.
In this study, administration of high doses of enalapril and benazepril significantly inhibited ACE activity, yet did not prevent increases in mean urine and serum aldosterone concentrations resulting from furosemide activation of RAAS. This suggested that aldosterone breakthrough from ACE inhibition was a dose-independent effect of ACE inhibitors.
Anode‐free sodium metal batteries (AF‐SMBs) can deliver high energy and enormous power, but their cycle lives are still insufficient for them to be practical as a power source in modern electronic devices and/or grid systems. In this study, a nanohybrid template based on high aspect‐ratio silver nanofibers and nitrogen‐rich carbon thin layers as a core–shell structure is designed to improve the Coulombic efficiency (CE) and cycling performance of AF‐SMBs. The catalytic nanohybrid templates dramatically reduce the voltage overshooting caused by metal nucleation to one‐fifth that of a bare Al foil electrode (≈6 mV vs ≈30 mV), and high average CE values of >99% are achieved over a wide range of current rates from 0.2 to 8 mA cm−2. Moreover, exceptionally long cycle lives for more than 1600 cycles and an additional 1500 cycles are achieved with a highly stable CE of >99.9%. These results show that AF‐SMBs are feasible with the nanohybrid electrode system.
For legged robots, collecting tactile information is essential for stable posture and efficient gait. However, mounting sensors on small robots weighing less than 1 kg remain challenges in terms of the sensor’s durability, flexibility, sensitivity, and size. Crack-based sensors featuring ultra-sensitivity, small-size, and flexibility could be a promising candidate, but performance degradation due to crack growing by repeated use is a stumbling block. This paper presents an ultra-stable and tough bio-inspired crack-based sensor by controlling the crack depth using silver nanowire (Ag NW) mesh as a crack stop layer. The Ag NW mesh inspired by skin collagen structure effectively mitigated crack propagation. The sensor was very thin, lightweight, sensitive, and ultra-durable that maintains its sensitivity during 200,000 cycles of 0.5% strain. We demonstrate sensor’s feasibility by implementing the tactile sensation to bio-inspired robots, and propose statistical and deep learning-based analysis methods which successfully distinguished terrain type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.