Traffic sign detection and recognition systems are essential components of Advanced Driver Assistance Systems and self-driving vehicles. In this contribution we present a vision-based framework which detects and recognizes traffic signs inside the attentional visual field of drivers. This technique takes advantage of the driver's 3D absolute gaze point obtained through the combined use of a front-view stereo imaging system and a non-contact 3D gaze tracker. We used a linear Support Vector Machine as a classifier and a Histogram of Oriented Gradient as features for detection. Recognition is performed by using Scale Invariant Feature Transforms and color information. Our technique detects and recognizes signs which are in the field of view of the driver and also provides indication when one or more signs have been missed by the driver.
Osmotic dehydration, as a minimal processing method, has found increasingly wide prospects during the past few decades. This process involves mass transfer which is commonly modeled by applications of different procedures, mostly based on Fick's law. In this research, we approach the modeling process by first obtaining experimental measurement of carrots solid gain and water loss under different conditions of solution concentrations ( 20, 40 and 60% w/w), temperatures ( 40, 60 and 80°C) as well as time intervals (1-6h). Then two paradigms of artificial neural networks (ANN), feed forward neural networks (FFNN) and radial basis function neural networks (RBFNN) are applied and compared for modeling this process. Additionally, genetic algorithm is used to determine optimal conditions for osmotic dehydration.
Clustering involves grouping data points together according to some measure of similarity. Clustering is one of the most significant unsupervised learning problems and do not need any labeled data. There are many clustering algorithms, among which fuzzy c-means (FCM) is one of the most popular approaches. FCM has an objective function based on Euclidean distance. Some improved versions of FCM with rather different objective functions are proposed in recent years. Generalized Improved fuzzy partitions FCM (GIFP-FCM) is one of them, which uses norm distance measure and competitive learning and outperforms the previous algorithms in this field. In this paper, we present a novel FCM clustering method with improved fuzzy partitions that utilizes shadowed sets and try to improve GIFP-FCM in noisy data sets. It enhances the efficiency of GIFP-FCM and improves the clustering results by correctly eliminating most outliers during steps of clustering. We name the novel fuzzy clustering method shadowed set-based GIFP-FCM (SGIFP-FCM). Several experiments on vessel segmentation in retinal images of DRIVE database illustrate the efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.