This perspective focuses on the cage size dependent properties of novel solid fullerene nanofilms grown by soft-landing of mass-selected C(n)(+) (48, 50, 52, 54, 56, 58, 62, 64, 66 and 68) onto room temperature graphite surfaces under ultra-high vacuum conditions. Such non-isolated-pentagon-ring (non-IPR) fullerene materials are not accessible to standard fullerene preparation methods. The component molecular building blocks of non-IPR films were generated by electron impact induced ionization/fragmentation of sublimed IPR-C(70)(D(5h)) (-->C(n) (n = 68, 66, 64, 62)) or IPR-C(60)(I(h)) (-->C(n) (n = 58, 56, 54, 52, 50)). Non-IPR fullerene films on graphite grow via formation of dendritic C(n) aggregates, whereas deposition of IPR fullerenes under analogous conditions (via deposition of unfragmented C(60)(+) and C(70)(+)) leads to compact islands. The latter are governed by weak van der Waals cage-cage interactions. In contrast, the former are stabilized by covalent intercage bonds as mediated by the non-IPR sites (primarily adjacent pentagon pairs, AP). A significant fraction of the deposited non-IPR C(n) cages can be intactly (re)sublimed by heating. The corresponding mean desorption activation energies, E(des), increase from 2.1 eV for C(68) up to 2.6 eV for C(50). The densities of states in the valence band regions (DOS), surface ionization potentials (sIP) and HOMO-LUMO gaps (Delta) of semiconducting non-IPR films were measured and found to vary strongly with cage size. Overall, the n-dependencies of these properties can be interpreted in terms of covalently interconnected oligomeric structures comprising the most stable (neutral) C(n) isomers-as determined from density functional theory (DFT) calculations. Non-IPR fullerene films are the first known examples of elemental cluster materials in which the cluster building blocks are covalently but reversibly interconnected.
We have studied the oxidation of multilayer thin films of coronene (C 24 H 12 ) on graphite under UHV conditions. Coronene films were grown by low-energy cluster ion beam deposition (LECBD, C 24 H 12 + , E kin < 6 eV) and subsequently oxidized by exposing them to a beam of nearthermal atomic oxygen at room temperature. Mass spectra recorded during sublimation of the oxidized coronene films reveal a distribution of emitted species, C 24 H 12 O n (n ≤ 7), which we assign as coronene epoxides. From the fragmentation pattern we infer that primarily rim epoxides are formed, which exhibit a higher stability than core epoxides according to DFT calculations. In addition to epoxides, XPS indicates that other oxidic functional groups, such as ethers, are also formed in smaller relative amounts as nonsublimable species. The overall yield for the thermal desorption of intact coronene oxides can be up to 7% of the deposited coronene, sufficiently high such that this procedure could be useful as a source of monodispersed nanoscale graphene oxides (nano-GOs) for applications in nanotechnology.
C58 fullerenes were adsorbed onto room temperature Au(111) surface by low-energy (~6 eV) cluster ion beam deposition under ultrahigh vacuum conditions. The topographic and electronic properties of the deposits were monitored by means of scanning tunnelling microscopy (STM at 4.2 K). Topographic images reveal that at low coverages fullerene cages are pinned by point dislocation defects on the herringbone reconstructed gold terraces (as well as by step edges). At intermediate coverages, pinned monomers act as nucleation centres for the formation of oligomeric C58 chains and 2D islands. At the largest coverages studied, the surface becomes covered by 3D interlinked C58 cages. STM topographic images of pinned single adsorbates are essentially featureless. The corresponding local densities of states are consistent with strong cage-substrate interactions. Topographic images of [C58]n oligomers show a stripe-like intensity pattern oriented perpendicular to the axis connecting the cage centers. This striped pattern becomes even more pronounced in maps of the local density of states. As supported by density functional theory, DFT calculations, and also by analogous STM images previously obtained for C60 polymers [M. Nakaya, Y. Kuwahara, M. Aono, and T. Nakayama, J. Nanosci. Nanotechnol. 11, 2829 (2011)], we conclude that these striped orbital patterns are a fingerprint of covalent intercage bonds. For thick C58 films we have derived a bandgap of 1.2 eV from scanning tunnelling spectroscopy data confirming that the outermost C58 layer behaves as a wide band semiconductor.
A monodispersed fullerene material comprising exclusively C(58) cages was doped with Cs to generate Cs(x)C(58) films of various compositions. The resulting modified properties have been studied using a variety of surface analysis methods with emphasis on thermal desorption and ultraviolet photoelectron spectroscopies. Cs doping raises the thermal stability of C(58) films which are characterized by quasi-covalent cage-cage bonds between annelated pentagon sites. Desorption mass spectra show emission of significant amounts of C(60) at elevated temperatures implying that Cs doping can activate C(58)→C(60) conversion in the condensed phase. In the case of saturated Cs(x)C(58) films, up to 4.5% of the initially deposited C(58) can be desorbed as C(60). From the spectroscopic data, we infer that Cs insertion and transport into the interstitial sites of the C(58) solid is accompanied by spontaneous electron transfer to the electronegative fullerene framework-leading to a weakening of intercage carbon-carbon bonds. At the same time, the overall cohesion of the solid film is enhanced by the formation of multiple ionic Cs(+) (β)C(58) (-) (δ) interactions. Near 800 K, Cs(+) activates∕catalyzes concerted disproportionation reactions resulting in the transfer of C(2) from C(58) (-) (δ) to neighbouring cages to yield C(60) (and C(56)). Heating Cs(x)C(58) films to beyond this temperature range yields a (high temperature) stable reaction product with a significantly modified UP spectrum and a finite density of states at the Fermi level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.