Citation: GHANIZADEH, S. ...et al., 2017. Improved transparency and hardness in α-alumina ceramics fabricated by high-pressure SPS of nanopowders.Ceramics International, 43 (1), Part A, pp. 275-281.Additional Information:• This paper was accepted for publication in the journal Ceram- This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractNanocrystalline alumina powder with an average crystallite size of ≤50 nm has been consolidated by spark plasma sintering (SPS) and hot pressing (HP) with a view to achieving dense, fine grained alumina bodies that display transparency. When as-synthesised powder was densified directly, excessive grain growth resulted from both the SPS and HP techniques and hence a large final grain size was observed. Attempts to improve the uniformity of the green microstructure prior to densification were unsuccessful when spray freeze dried granules were used, whether pre-pressed into a compact or not. The use of 53% dense slip cast green compacts, however, enabled final density of ~99.96% and a mean grain size of ~0.32 μm to be achieved when SPS conditions of 1200˚C and 500 MPa were 2 applied for 20 minutes. These samples offered in-line transmittance values of up to ~80%and microhardness values of 22 GPa.
Aqueous dispersions of tin-doped indium oxide (ITO) nanopowder were prepared and the effect of the addition of PEG 400, Tween 80 and β-alanine as dispersants was investigated using zeta potential and particle size distribution measurements. Both PEG 400 and β-alanine were found to produce stable dispersions that were used to deposit ITO thin films on glass substrates by dip and spin coating methods. The ITO thin films were heat-treated using both conventional and microwave heat treatment in order to improve the inter-particle connections and hence the resistivity and transparency of the films. All the films exhibited an average transmittance of >80% over the visible spectrum after being subjected to the heat treatment process. ITO films prepared with no dispersant showed very high resistivity values for both heating methods, however addition of 2 wt% PEG 400 to the dispersion yielded a reduction in the resistivity values to 1.4 × 10 -1 Ω cm and 3.8 × 10 -2 Ω cm for conventionally and microwave treated films, respectively. The surface morphological studies confirmed that addition of dispersants improved the film uniformity and inter-particle connections of the ITO films considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.