Continuous decline of earth’s natural resources and increased use of hazardous chemical fertilizers pose a great concern for the future of agriculture. Biofertilizers are a promising alternative to hazardous chemical fertilizers and are gaining importance for attaining sustainable agriculture. Biofertilizers play a key role in increasing crop yield and maintaining long-term soil fertility, which is essential for meeting global food demand. Microbes can interact with the crop plants and enhance their immunity, growth, and development. Nitrogen, phosphorous, potassium, zinc, and silica are the essential nutrients required for the proper growth of crops, but these nutrients are naturally present in insolubilized or complex forms. Certain microorganisms render them soluble and make them available to the plants. The potential microbes, their mode of action, along with their effect on crops, are discussed in this review. Biofertilizers, being cost effective, non-toxic, and eco-friendly, serve as a good substitute for expensive and harmful chemical fertilizers. The knowledge gained from this review can help us to understand the importance of microbes in agriculture and the ways to formulate these microbes as biofertilizers for sustainable crop production.
Natural and de-novo biosynthesized phyto-compounds have gained much significance because of their non-controversial nutritional, health and safety benefits as compared with chemically synthesized commercially rivalry antioxidants. However, none of natural de-novo biosynthesized phyto-compounds has been commercially available and used in customary food business and processing. In this study, efficacy of sesame seed extracts (SSEs) in stabilizing sunflower oil during storage has been studied. Fine powder of sesame seed was extracted in different solvents. The results showed that significant differences in extractability of different solvents and maximum extraction yield (29.48%) were achieved with methanol. The antioxidant components and capability of different extracts were further investigated and evaluated via total phenolic contents, DPPH radical scavenging activity and β-carotene/linoleic acid calorimetric assays respectively. Being highest in yield and antioxidant potential, methanolic extract was used; three different concentrations of SSE (500, 750, and 1000 μL) were added in 100 mL of sunflower oil to further evaluate its oxidative stability. Sensory and oxidative analysis of baked product from these groups was also evaluated.
Carotenoids are natural potent antioxidants and free radical scavengers which are able to modulate the pathogenesis of some cancers and heart diseases in human, indicating their importance in being provided through the diet. Mucor circinelloides accumulates β-carotene as the main carotenoid compound and has been used as a model organism in carotenogenic studies. In the present study, the potential of two M. circinelloides strains to accumulate β-carotene was investigated under light and dark conditions. The results, which were quantitated by HPLC, showed that CBS 277.49 accumulated higher pigment in comparison to WJ11 under both conditions. Continuous illumination triggered the pigment accumulation up to 2.7-fold in strain CBS 277.49 and 2.2-fold in strain WJ11 in comparison to dark. The mRNA analysis of the four key genes involved in isoprenoid pathway by RT-qPCR showed higher transcriptional levels in CBS 277.49 as compared to WJ11, indicating that the pigment production metabolic machinery is more active in CBS 277.49 strain. A new scope for further research was established by this work for improved β-carotene production in the high producing strain CBS 277.49.
Stearidonic Acid (SDA; 18:4, n-3) is a ω-3 polyunsaturated fatty acid which is nutritionally important and has pharmaceutical applications. Hence, scientists are trying to construct SDA producing oleaginous microorganisms by genetic modification. Two enzymes, Delta-6 Desaturase (D6D) and ω-3 desaturase catalyze the reactions to produce SDA from Linoleic Acid (LA; 18:2, n-6). But the key enzyme, ω-3 desaturase converts LA to ALA and GLA to SDA is absent in high lipid accumulating Mucor circinelloides WJ11, retarding its ability to produce SDA. Therefore, in this study, we overexpressed fad3 gene from Arabidopsis thaliana in M. circinelloides WJ11 to produce SDA. Overexpression of fad3 gene in M. circinelloides WJ11 resulted in the production of 340 mg/l SDA. This research opened a new opportunity to make use of this fungus for industrial production of SDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.