Microencapsulation of polyherbal formulation (PHF) extract was carried out by freeze drying method, by employing gum arabic (GA), gelatin (GE), and maltodextrin (MD) with their designated different combinations as encapsulating wall materials. Antioxidant components (i.e., total phenolic contents (TPC), total flavonoids contents (TFC), and total condensed tannins (TCT)), antioxidant activity (i.e., DPPH, β-carotene & ABTS+ assays), moisture contents, water activity (aw), solubility, hygroscopicity, glass transition temperature (Tg), particle size, morphology, in vitroα-amylase and α-glucosidase inhibition and bioavailability ratios of the powders were investigated. Amongst all encapsulated products, TB (5% GA & 5% MD) and TC (10% GA) have proven to be the best treatments with respect to the highest preservation of antioxidant components. These treatments also exhibited higher antioxidant potential by DPPH and β-carotene assays and noteworthy for an ABTS+ assays. Moreover, the aforesaid treatments also demonstrated lower moisture content, aw, particle size and higher solubility, hygroscopicity and glass transition temperature (Tg). All freeze dried samples showed irregular (asymmetrical) microcrystalline structures. Furthermore, TB and TC also illustrated the highest in vitro anti-diabetic potential due to great potency for inhibiting α-amylase and α-glucosidase activities. In the perspective of bioavailability, TA, TB and TC demonstrated the excellent bioavailability ratios (%). Furthermore, the photochemical profiling of ethanolic extract of PHF was also revealed to find out the bioactive compounds.
Carotenoids are natural potent antioxidants and free radical scavengers which are able to modulate the pathogenesis of some cancers and heart diseases in human, indicating their importance in being provided through the diet. Mucor circinelloides accumulates β-carotene as the main carotenoid compound and has been used as a model organism in carotenogenic studies. In the present study, the potential of two M. circinelloides strains to accumulate β-carotene was investigated under light and dark conditions. The results, which were quantitated by HPLC, showed that CBS 277.49 accumulated higher pigment in comparison to WJ11 under both conditions. Continuous illumination triggered the pigment accumulation up to 2.7-fold in strain CBS 277.49 and 2.2-fold in strain WJ11 in comparison to dark. The mRNA analysis of the four key genes involved in isoprenoid pathway by RT-qPCR showed higher transcriptional levels in CBS 277.49 as compared to WJ11, indicating that the pigment production metabolic machinery is more active in CBS 277.49 strain. A new scope for further research was established by this work for improved β-carotene production in the high producing strain CBS 277.49.
γ-Linolenic acid (GLA) and carotenoids have attracted much interest due to their nutraceutical and pharmaceutical importance. Mucoromycota, typical oleaginous filamentous fungi, are known for their production of valuable essential fatty acids and carotenoids. In the present study, 81 fungal strains were isolated from different Egyptian localities, out of which 11 Mucoromycota were selected for further GLA and carotenoid investigation. Comparative analysis of total lipids by GC of selected isolates showed that GLA content was the highest in Rhizomucor pusillus AUMC 11616.A, Mucor circinelloides AUMC 6696.A, and M. hiemalis AUMC 6031 that represented 0.213, 0.211, and 0.20% of CDW, respectively. Carotenoid analysis of selected isolates by spectrophotometer demonstrated that the highest yield of total carotenoids (640 μg/g) was exhibited by M. hiemalis AUMC 6031 and M. hiemalis AUMC 6695, and these isolates were found to have a similar carotenoid profile with, β-carotene (65%), zeaxanthin (34%), astaxanthin, and canthaxanthin (5%) of total carotenoids. The total fatty acids of all tested isolates showed moderate antimicrobial activity against Staphylococcus aureus and Salmonella Typhi, and Penicillium chrysogenum. To the best of our knowledge, this is the first report on the highest yield of total lipid accumulation (51.74% CDW) by a new oleaginous fungal isolate R. pusillus AUMC 11616.A. A new scope for a further study on this strain will be established to optimize and improve its total lipids with high GLA production. So, R. pusillus AUMC 11616.A might be a potential candidate for industrial application.
Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides—an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.
In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%–28% and 66%–84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.