The potential health benefits of probiotics have long been elucidated since Metchnikoff and his coworkers postulated the association of probiotic consumption on human's health and longevity. Since then, many scientific findings and research have further established the correlation of probiotic and gut-associated diseases such as irritable bowel disease and chronic and antibiotic-associated diarrhea. However, the beneficial impact of probiotic is not limited to the gut-associated diseases alone, but also in different acute and chronic infectious diseases. This is due to the fact that probiotics are able to modify the intestinal microbial ecosystem, enhance the gut barrier function, provide competitive adherence to the mucosa and epithelium, produce antimicrobial substances, and modulate the immune activity by enhancing the innate and adaptive immune response. Nevertheless, the current literature with respect to the association of probiotic and cancer, high serum cholesterol, and allergic and HIV diseases are still scarce and controversial. Therefore, in the present work, we reviewed the potential preventive and therapeutic role of probiotics for cancer, high serum cholesterol, and allergic and HIV diseases as well as providing its possible mechanism of actions.
Microencapsulation of polyherbal formulation (PHF) extract was carried out by freeze drying method, by employing gum arabic (GA), gelatin (GE), and maltodextrin (MD) with their designated different combinations as encapsulating wall materials. Antioxidant components (i.e., total phenolic contents (TPC), total flavonoids contents (TFC), and total condensed tannins (TCT)), antioxidant activity (i.e., DPPH, β-carotene & ABTS+ assays), moisture contents, water activity (aw), solubility, hygroscopicity, glass transition temperature (Tg), particle size, morphology, in vitroα-amylase and α-glucosidase inhibition and bioavailability ratios of the powders were investigated. Amongst all encapsulated products, TB (5% GA & 5% MD) and TC (10% GA) have proven to be the best treatments with respect to the highest preservation of antioxidant components. These treatments also exhibited higher antioxidant potential by DPPH and β-carotene assays and noteworthy for an ABTS+ assays. Moreover, the aforesaid treatments also demonstrated lower moisture content, aw, particle size and higher solubility, hygroscopicity and glass transition temperature (Tg). All freeze dried samples showed irregular (asymmetrical) microcrystalline structures. Furthermore, TB and TC also illustrated the highest in vitro anti-diabetic potential due to great potency for inhibiting α-amylase and α-glucosidase activities. In the perspective of bioavailability, TA, TB and TC demonstrated the excellent bioavailability ratios (%). Furthermore, the photochemical profiling of ethanolic extract of PHF was also revealed to find out the bioactive compounds.
Malate as an important intermediate metabolite, its subcellular location, and concentration have a significant impact on fungal lipid metabolism. Previous studies showed that the mitochondrial malate transporter plays an important role in lipid accumulation in Mucor circinelloides by manipulating intracellular malate concentration. However, the role of plasma membrane malate transporters in oleaginous fungi remains unexplored. Therefore, in this work, two plasma membrane malate transporters "2oxoglutarate:malate antiporters" (named SoDIT-a and SoDIT-b) of M. circinelloides WJ11 were deleted, and the consequences in growth capacity, lipid accumulation, and metabolism were analyzed. The results showed that deletion of sodit-a or/and sodit-b reduced the extracellular malate, confirming that the products of both genes participate in malate transportation. In parallel, the lipid contents in mutants increased approximately 10−40% higher than that in the control strain, suggesting that the defect in plasma membrane malate transport results in an increase of malate available for lipid biosynthesis. Furthermore, transcriptional analysis showed that the expression levels of multiple key genes involved in the lipid biosynthesis were also increased in the knockout mutants. To the best of our knowledge, this is the first report that demonstrated the association between plasma membrane malate transporters and lipid accumulation in M. circinelloides.
Carotenoids are natural potent antioxidants and free radical scavengers which are able to modulate the pathogenesis of some cancers and heart diseases in human, indicating their importance in being provided through the diet. Mucor circinelloides accumulates β-carotene as the main carotenoid compound and has been used as a model organism in carotenogenic studies. In the present study, the potential of two M. circinelloides strains to accumulate β-carotene was investigated under light and dark conditions. The results, which were quantitated by HPLC, showed that CBS 277.49 accumulated higher pigment in comparison to WJ11 under both conditions. Continuous illumination triggered the pigment accumulation up to 2.7-fold in strain CBS 277.49 and 2.2-fold in strain WJ11 in comparison to dark. The mRNA analysis of the four key genes involved in isoprenoid pathway by RT-qPCR showed higher transcriptional levels in CBS 277.49 as compared to WJ11, indicating that the pigment production metabolic machinery is more active in CBS 277.49 strain. A new scope for further research was established by this work for improved β-carotene production in the high producing strain CBS 277.49.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.