Shaped charge is a device for focusing the chemical energy of explosives to a particular point or line for penetration or cutting purpose respectively. They are used for the penetration or cutting of various types of targets on land, water, underground, underwater, or air. Their shape is either conical or linear and consists of explosive, casing and liner. The liner is bent towards the central axis producing a thin hypervelocity jet by the energy released as a result of the explosive detonation. This jet is utilized against the target. Shaped charges can perforate or penetrate targets like aircrafts, ships, submarines, armored vehicles, battle tanks, and bunkers. This paper presents a detailed review of analytical works, computer simulations, and experimental results related to the liner. Among modern diagnostic techniques flash x-rays, radiography is most used in the experiments performed in the last 40 years. Powder metallurgy, which started in the late twentieth century raised the efficiency of shaped charges to new altitudes. The efficiency of the shaped charge depends on numerous factors such as explosive’s type, liner’s material, geometry and metallurgy, manufacturing technique, and casing thickness. Factors concerning the liner’s material, metallurgical advancements, and geometry are discussed chronologically and in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.