of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
The properties of the estimators of population mean arising from the ratio and product methods of estimation in the context of sample surveys have been analyzed in this paper when the observations on both the study and auxiliary variables are contaminated with measurement errors. The measurement errors in both the variables are also correlated. The properties of the ratio and product estimators along with the sample mean under the influence of measurement errors are derived and studied. The properties of the estimators in finite samples are studied through Monte-Carlo simulation and its findings are reported.
The coefficient of determination (R 2 ) is used for judging the goodness of fit in a linear regression model. It gives valid results only when the observations are correctly observed without any measurement error. The R 2 provides invalid results in the presence of measurement errors in the data in the sense that sample R 2 becomes an inconsistent estimator of population multiple correlation coefficient between the study variable and explanatory variables. The corresponding variants of R 2 which can be used to judge the goodness of fit in multivariate measurement error model have been proposed in this paper. These variants are based on the utilization of information on known covariance matrix of measurement errors and known reliability matrix associated with explanatory variables. The asymptotic properties of the traditional R 2 and proposed R 2 have been studied.
In this article, we consider the estimation of population mean when some observations on the study characteristic are missing in the bivariate sample data. In all, ve estimators are presented and their e ciency properties are discussed. One estimator arises from the the amputation of incomplete observations while the remaining four estimators are formulated using inputed values obtained by the ratio method of estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.