Silicon carbide (SiC) has long been known as a robust semiconductor with superior properties to silicon for electronic applications. The cubic form of SiC, known as 3C-SiC, has been researched for non-electronic applications, such as
In this study, we present a small-size implantable RF antenna (biosensor) which is made of fully biocompatible material, cubic silicon carbide. Silicon Carbide is one of the few semiconducting materials that combine biocompatibility and sensing potentiality. The hypothesis of a SiC based antenna, to be used for glucose monitoring, is that the changes in the medium surrounding the antenna affect the antenna properties such as input impedance and resonance frequency, and these changes can be used to estimate the patient’s plasma glucose level. An all-SiC patch antenna has been designed, simulated and fabricated with a target frequency of operation of 10 GHz. A Cu patch antenna was fabricated on SiC to serve as a reference antenna. The all-SiC antenna was realized by growing a poly-crystalline 3C-SiC film using CVD on a thick oxide layer that had been coated with poly-Si to serve as a growth template. A semi-insulating 4H-SiC substrate was used to minimize RF losses during operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.