N6-methyladenosine (m6A) is considered the most common, abundant, and conserved internal transcript modification, especially in eukaryotic messenger RNA (mRNA). m6A is installed by m6A methyltransferases (METTL3/14, WTAP, RBM15/15B, VIRMA and ZC3H13, termed “writers”), removed by demethylases (FTO, ALKBH5, and ALKBH3, termed “erasers”), and recognized by m6A-binding proteins (YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, HNRNP, and eIF3, termed “readers”). Accumulating evidence suggests that m6A RNA methylation greatly impacts RNA metabolism and is involved in the pathogenesis of many kinds of diseases, including cancers. In this review, we focus on the physiological functions of m6A modification and its related regulators, as well as on the potential biological roles of these elements in human tumors.
Targeted treatment, which can specifically kill tumour cells without affecting normal cells, is a new approach for tumour therapy. However, tumour cells tend to acquire resistance to targeted drugs during treatment. Circular RNAs (circRNAs) are single-stranded RNA molecules with unique structures and important functions. With the development of RNA sequencing technology, circRNAs have been found to be widespread in tumour-resistant cells and to play important regulatory roles. In this review, we present the latest advances in circRNA research and summarize the various mechanisms underlying their regulation. Moreover, we review the role of circRNAs in the chemotherapeutic resistance of tumours and explore the clinical value of circRNA regulation in treating tumour resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.