Stretchable electronic materials and devices have important applications in flexible electronic systems including wearable electronics and bioelectronics. Convenient electricity generation such as thermoelectric conversion is required for the flexible electronic systems. Hence, it is development of high‐performance thermoelectric materials with high mechanical stretchability would be highly desirable. Here, stretchable and transparent ionogels with high thermoelectric properties are demonstrated. The ionogels made of elastomeric waterborne polyurethane and 1‐ethyl‐3‐methylimidazolium dicyanamide (EMIM:DCA, an ionic liquid) are prepared by solution processing. Their mechanical and electrical properties depend on the loading of EMIM:DCA. The ionogels with 40 wt% EMIM:DCA can have a high mechanical stretchability of up to 156%, low tensile strength of 0.6 MPa, and low Young's modulus of 0.6 MPa. They also exhibit a high ionic thermovoltage of 34.5 mV K−1, high ionic conductivity of 8.4 mS cm−1 and low thermal conductivity of 0.23 W m−1 K−1 at a relative humidity of 90%. As a result, it can have a high ionic figure of merit (ZTi) of 1.3 ± 0.2. Both the thermovoltage and the ZTi value are the highest for stretchable thermoelectric materials. They can be used in ionic thermoelectric capacitors to convert heat into electricity.
Abnormal microenvironments (viscosity, polarity, pH, etc.) have been verified to be closely associated with numerous pathophysiological processes such as inflammation, neurodegenerative diseases, and cancer.
NixCo2x(OH)6x, as a precursor of intensively studied NiCo2O4, has been directly deposited into self-standing titanium nitride nanotube array (TiN NTA) grid monolithic supports to form a coaxial nanostructured electrode for supercapacitors. With TiN NTA substrates providing a large surface area, fast electron transport, and enhanced structure stability, this NixCo2x(OH)6x/TiN electrode exhibits superior pseudocapacitive performance with a high specific capacitance of 2543 F g(-1) at 5 mV s(-1), remarkable rate performance of 660 F g(-1) even at 500 mV s(-1), and promising cycle performance (about 6.25% capacitance loss for 5000 cycles). Interestingly, the NixCo2x(OH)6x/TiN NTA electrode outperforms the NiCo2O4/TiN NTA electrode, indicating that this self-standing NixCo2x(OH)6x/TiN NTA monolith is a promising candidate for high-performance supercapacitor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.