The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1-100 nm) and submicrometre (100-1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics, data storage, optoelectronics, displays, sacrificial templates and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography), photolithography, electron-beam lithography, block-copolymer templating and dip-pen lithography, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique--electrostatic nanolithography using atomic force microscopy--that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (10(2)-10(5) nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip-film contact.
Amplitude modulated electrostatic lithography using atomic force microscopy (AFM) on 20–50 nm thin polymer films is discussed. Electric bias of AFM tip increases the distance over which the surface influences the oscillation amplitude of an AFM cantilever, providing a process window to control tip-film separation. Arrays of nanodots, as small as 10–50 nm wide by 1–10 nm high are created via a localized Joule heating of a small fraction of polymer above the glass transition temperature, followed by electrostatic attraction of the polarized viscoelastic polymer melt toward the AFM tip in the strong (108–109 V/m) nonuniform electric field.
In vitro assembly of Wiseana iridescent virus (WIV) yields iridescent pellets and films with structural color more vivid than in the native insect. WIV is icosahedral in shape, 140 nm in diameter, with 30 nm long fibrils attached to the outer surface, and exhibits a surface charge ca. 1/6th that of a comparable polymer colloid. The low surface charge and tethered chains on the virus surface allow the facile modification of the interparticle distance. Directed sedimentation yields predominantly an amorphous liquid‐like packing of the virus. Such samples exhibit a broad reflection band that is angle independent and for which the broad maximum can be reversibly shifted from blue towards red with increased hydration. Slow sedimentation and flow‐assisted assembly methods produce thin films with a polycrystalline morphology that exhibit narrower, more intense reflectivity peaks, which are hydration and angle dependent. This study points toward the potential of viral particles for photonic crystals where their unique structural features (icosahedral symmetry, extreme monodispersity, precise surface functionalization, and tethered surface chains of low surface‐charge density) may lead to superior control of optical properties of their assembled arrays.
Z -lift electrostatic lithography on thin (10–50nm) polystyrene (PS) films is discussed. The height of nanostructures can be controlled via mechanically drawing or depressing the cantilever height (z-lift) during the application of a voltage. Since polymer is not removed or crosslinked during structure formation, the features are erasable. Various aspects such as voltage doses, film thickness, z-lift height, and rate are explored. Structure height formation relies mainly on, and is proportional, to the z-lift magnitude; however, only a narrow range of voltages yields structures for any given film thickness. Structures ranging from 0–10nm are produced on a 40nm thick PS film using −36V by varying the z-lift on a 0.1–0.9N∕m cantilever from −20nm to +400nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.