PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Tai Chi for more than 8 weeks has short-term ameliorative effects on CRF, especially among patients with breast and lung cancer. Its beneficial effects are superior to physical exercise and psychological support. It remains unclear whether there are long-term benefits, and further study is needed.
In recent years, traditional Chinese medicine has played an important role in the treatment of gastric cancer in China. ZiYinHuaTan (ZYHT) recipe was developed for advanced gastric cancer and had shown its promising value in the clinic. In this study, we explore the effect of ZYHT on gastric cancer in vitro and in vivo. ZYHT can inhibit tumor growth and improve the general condition of mice in subcutaneous transplantation nude mice models of gastric cancer. And ZYHT can also inhibit cell proliferation and blocked the cells in G0/G1 to induce cell apoptosis in HGC27 and MGC803 cells. Then, network pharmacology analysis showed that ZYHT may exert antitumor effect mainly through PI3K/AKT signaling pathway. Furthermore, the expression of PI3K, p-Akt, CyclinD1, and Bcl-2 was detected in vitro and in vivo. The results showed that ZYHT could decrease the expression of PI3K, CyclinD1, and Bcl-2 both in vitro and in vivo. These results suggested that ZYHT could be used as a method for the treatment of developed gastric cancer.
Objective: To determine the effect and mechanism of the long non-coding RNA (lncRNA) ncRuPAR (non-protein coding RNA, upstream of coagulation factor II thrombin receptor [F2R]/protease-activated receptor-1 [PAR-1]) in human gastric cancer. Methods: HGC-27-ncRuPAR overexpression and MGC-803-ncRuPAR-RNAi knockdown gastric cancer cell lines were established. We assessed the effect of ncRuPAR on cell proliferation, apoptosis, migration, and invasion using Cell Counting Kit 8, flow cytometry, scratch and transwell assays, respectively. Differentially expressed genes in HGC-27-ncRuPAR overexpression and HGC-27-empty vector cell lines were identified using Affymetrix GeneChip microarray analysis. Ingenuity Pathway Analysis (IPA) of the microarray results was subsequently conducted to identify ncRuPAR-enriched pathways, followed by validation using real time-quantitative PCR (RT-qPCR). As one of the top enriched pathways, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was further examined by western blotting to determine its role in ncRuPAR-mediated regulation of gastric cancer pathogenesis. Results: ncRuPAR inhibited human gastric cancer cell proliferation and induced G1/S phase arrest and apoptosis, but did not affect migration or invasion in vitro. Overexpression of ncRuPAR in vitro was found to inhibit its known target PAR-1, as well as PI3K/Akt signaling. The downstream targets of PI3K/Akt, cyclin D1 was downregulated, but there was no change in expression level of B-cell lymphoma 2 (Bcl-2). Conclusions: We showed that lncRNA-ncRuPAR could inhibit tumor cell proliferation and promote apoptosis of human gastric cancer cells, potentially by inhibiting PAR-1, PI3K/Akt signaling, and cyclin D1. The results suggest a potential role for lncRNAs as key regulatory hubs in GC progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.