As an important method
to effectively improve energy efficiency,
the study of thermal energy storage is particularly important. In
this study, six types of clay mineral-based form-stable phase-change
materials (FSPCMs) were prepared by the vacuum adsorption method.
The adsorption capacity of vermiculite and diatomite was satisfactory,
and sepiolite showed the worst adsorption capacity. Clay minerals
can delay the thermal decomposition rate of capric–palmitic
acid (CA–PA), and the specific surface area and pore capacity
of clay minerals all decrease dramatically after the clay minerals
have absorbed CA–PA. FSPCMs exhibited a higher heat storage
and release efficiency and reflects a certain temperature control
performance. In addition, only physical adsorption between the CA–PA
and the clay material occurred, and no chemical reaction occurred.
Finally, FSPCMs still have high latent heat of phase transition, and
they can be used for low-temperature thermal energy storage.
In this study, a capric acid (CA)-stearic acid (SA)/ expanded graphite (EG) composite phase change material (PCM) was prepared, and the optimum mass ratio of CA-SA is 0.84:0.16. The composite PCM was characterized by scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. It can be concluded that the CA-SA mixture was found to possess good compatibility with EG, the thermal conductivity of the CA-SA/10 wt % EG composite PCM was 3.28 times higher than that of the CA-SA mixture, and the PCM thermal stability was satisfactory; no leakage occurred in the CA-SA/10 wt % EG composite PCM. The PCM has good thermal reliability after 500 thermal cycles. Finally, it is shown that the CA-SA/10 wt % EG composite PCM showed excellent performance, and therefore, it can be used for low-temperature thermal energy storage.
The known cooling methods for the high-temperature operating environment of a mine mainly include ventilation, refrigeration, heat insulation, and individual protection. Among them, the superior performance and wide application of the heat insulation materials have attracted the attention of the coal mining industry. In this paper, three types of mineral insulation materials were prepared using basalt fiber, glass fiber, vitrified microbeads in combination with cement, sand, high-strength ceramsite, water, etc. In addition, the thermal conductivity and compressive strength of the prepared specimens were assessed. The results show that the test specimen containing basalt fiber had a great thermal insulation effect and achieved the required compressive strength. Furthermore, according to the COMSOL simulation results, the test specimen containing basalt fiber had a better thermal insulation effect than the ordinary concrete materials. Therefore, the research results of this article have guiding significance to search for new mine thermal insulation materials.
The fault tree analysis (FTA) method is an important analysis method for safety system engineering. Traditional accident analysis theory agrees that basic events lead to top events, but it does not fully consider that the accident process is accidental, and the calculation results exaggerate the probability of accident occurrence. This paper selects typical collision accidents, analyzes the shortcomings of the existing fault tree, indicates that there is a contingency in the accident process, constructs a probability fault tree based on the traditional fault tree, and puts forward concepts of “probability AND gate” and “probability OR gate”. In addition, based on the traditional quantitative analysis method of fault trees, calculations of the occurrence probability, probability importance coefficient, and critical importance coefficient of top events are modified, and the modified quantitative calculation is applied to accident cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.