Minimizing the negative ecological impacts of exotic plant invasions is one goal of land management. Using selective herbicides is one strategy to achieve this goal; however, the unintended consequences of this strategy are not always fully understood. The recently introduced herbicide indaziflam has a mode of action not previously used in non-crop weed management. Thus, there is limited information about the impacts of this active ingredient when applied alone or in combination with other non-crop herbicides. The objective of this research was to evaluate native species tolerance to indaziflam and imazapic applied alone and with other broadleaf herbicides. Replicated field plots were established at two locations in Colorado with a diverse mix of native forbs and grasses. Species richness and abundance were compared between the nontreated control plots and plots where indaziflam and imazapic were applied alone and in combination with picloram and aminocyclopyrachlor. Species richness and abundance did not decrease when indaziflam or imazapic were applied alone; however, species abundance was reduced by treatments containing picloram and aminocyclopyrachlor. Species richness was only impacted at one site 1 yr after treatment (YAT) by these broadleaf herbicides. Decreases in abundance were mainly due to reductions in forbs that resulted in a corresponding increase in grass cover. Our data suggest that indaziflam will control downy brome (Bromus tectorumL.) for multiple years without reduction in perennial species richness or abundance. IfB. tectorumis present with perennial broadleaf weeds requiring the addition of herbicides like picloram or aminocyclopyrachlor, forb abundance could be reduced, and in some cases there could be a temporary reduction in perennial species richness.
Indaziflam, a preemergent (PRE) herbicide option for weed management on rangeland and natural areas, provides long-term control of invasive winter annual grasses (IWAGs). Since indaziflam only provides PRE control of IWAGs, postemergent (POST) herbicides such as glyphosate can be mixed with indaziflam to control germinated IWAG seedlings. Field trials were conducted at three sites on the Colorado Front Range to evaluate glyphosate dose required to provide adequate POST IWAG control, and compare long-term Bromus tectorum L., Bromus japonicus Houtt. and Secale cereale L. control with indaziflam and imazapic. Two of the three sites were void of desirable species and so species establishment through drill seeding was assessed, while the remnant native plant response was assessed at the third site. Herbicide applications were made March 2014 through April 2015, and two sites were drill seeded with native species nine months after herbicide application. Yearly visual control evaluations, biomass of all plant species, and drilled species stand counts were collected. Glyphosate at 474 g ae ha-1 reduced B. tectorum biomass to zero, while glyphosate at 631 g ae ha-1 was needed to reduce biomass to near zero at the S. cereale site. At all three sites, only indaziflam treatments had significant reductions in IWAG biomass compared to the non-treated check at 3 years after treatment (YAT). By 3 YAT in the drill seeded sites, cool-season grass frequency ranged from 37 to 69% within indaziflam treatments (73 and 102 g ai ha-1) while imazapic treatments ranged from 0 to 26% cool-season grass frequency. In the site with a remnant native plant community, indaziflam treatments resulted in a three- to four-fold increase in native grass biomass. These results indicate that the multi-year IWAG control provided by indaziflam can aid in desirable species re-establishment through drill seeding or response of the remnant plant community.
Invasive winter annual grass infestations on rangeland accumulate large quantities of litter on the soil surface, as plants senesce yearly and decompose slowly. It has been speculated that winter annual grass litter can adsorb soil-active herbicides and reduce overall performance. Three experiments were conducted from 2017 to 2018 at the Colorado State University Weed Research Laboratory to evaluate interception and subsequent desorption of herbicides applied to litter from three invasive winter annual grass species with simulated rainfall. Imazapic, rimsulfuron, and indaziflam were applied to medusahead [Taeniatherum caput-medusae (L.) Nevski], ventenata [Ventenata dubia (Leers) Coss.], and downy brome (Bromus tectorum L.) litter at two amounts (equivalent to 1,300 and 2,600 kg ha−1). Rainfall was simulated at 3, 6, 12, and 24 mm at 0, 1, and 7 d after herbicide application. Herbicide concentration from the collected rainfall was measured using liquid chromatography–tandem mass spectrometry. At 2,600 kg ha−1, B. tectorum herbicide interception was 84.3%, while V. dubia and T. caput-medusae averaged 76% herbicide interception. There were no differences in desorption among the three litter types. Simulated rainfall at 0 d after application recovered 100% of the intercepted rimsulfuron and imazapic from B. tectorum litter, while recovery decreased to 65% with rainfall at 1 or 7 d after application. Only 54% of indaziflam could be recovered at 0 d, and recovery decreased to 33% when rainfall was applied at 1 or 7 d after application. Applying soil-active herbicides before forecasted rain or tank mixing with a POST herbicide to provide initial control could potentially increase the amount of herbicide reaching the soil and provide more consistent invasive winter annual grass control.
Invasive winter annual grasses are one of the largest threats to the arid and semiarid rangelands and wildlands in the Intermountain West of North America. The most impactful species include downy brome (Bromus tectorum), medusahead (Taeniatherum caput-medusae), ventenata (Ventenata dubia), and to a lesser extent Japanese brome (Bromus japonicus), feral rye (Secale cereale), and jointed goatgrass (Aegilops cylindrica). These winter annuals can germinate in the fall, winter or early spring, exploiting soil moisture and nutrients before native plant communities begin active growth in the spring. These characteristics impart a competitive advantage in the perennial grass dominated natural landscapes of the Intermountain West. Downy brome, a winter annual grass native to Eurasia, is the most widespread invasive species in the western US covering an estimated 22 million ha and a projected 14% annual spread rate. Invasive winter annuals negatively impact these ecosystems by depleting soil moisture and nutrients, reducing native plant productivity and diversity, altering fire frequency, and diminishing pollinator and wildlife habitat. Large amounts of litter which act as a fuel source are left after these grasses senesce early in the summer, greatly increasing the frequency and spread of wildfires in invaded areas. Historically, fire frequency in the 41 million ha sagebrush steppe occurred every 60 to 110 years, but this interval has been shortened to less than every five years since the introduction of invasive annual grasses. Annual grasses quickly (re)invade after these fires while sagebrush (Artemisia spp.), the dominant vegetation type in the sagebrush steppe, can take decades to recover. Therefore, the altered fire regime has resulted in a substantial loss of sagebrush and converted millions of hectares into monocultures of winter annual grass. This altered fire regime also negatively impacted the abundance of small mammals, birds, larger browsing mammals, and pollinating insects in the sagebrush steppe. Managing the weed seedbank is the key to long-term control of invasive winter annual grasses on rangelands and wildlands. Past herbicides have provided adequate short-term control but have often failed due to annual grasses reinvading from the soil seedbank. Indaziflam is a new tool for land managers to achieve multi-year control of the annual grass seedbank while promoting restoration of native species. As wildlife and pollinator habitat continue to be degraded and fragmented through development and agricultural production, indaziflam is a viable option for restoring the rangelands and wildlands impacted by winter annual grasses in the Intermountain West that serve as critical habitat areas.
B. tectorum (Bromus tectorum L.) is a highly invasive winter annual grass that can fill open niches in native plant communities. Prescribed burning is often used to control B. tectorum and can be combined with herbicide treatments to extend the duration of control and promote the native plant community. Several herbicides have been evaluated in conjunction with burning for B. tectorum control, although the herbicide indaziflam has not. In September 2017, two B. tectorum infested sites were burned in Colorado foothill shrublands. In March 2018, indaziflam was applied alone or in combination with glyphosate, rimsulfuron, or imazapic. These treatments were compared to imazapic plus glyphosate as a standard. All treatments were made within burned and non-burned areas in a crossed-nested design. Bromus tectorum cover and the desirable plant community responses were evaluated one and two years after treatment (YAT). In non-burned areas, all indaziflam treatments reduced B. tectorum cover compared to the control. In contrast, reductions from the imazapic treatments did not persist after the first year. Most post-burn treatments further decreased B. tectorum cover compared to the non-burned treatments. The most effective treatments (indaziflam 44 and 73 g ai ha−1 + imazapic 123 g ae ha−1) provided similar levels of control (< 1% B. tectorum cover 2 YAT), with or without burning. Desirable plant cover, richness, and diversity were not negatively impacted by burning or herbicide treatments. Plant diversity and species richness increased at Site 2 when burning was followed by indaziflam treatments. This study indicates that B. tectorum control using indaziflam can be enhanced when applied after burning, and the combinations with imazapic or rimsulfuron provide a wider application window compared to the combination with glyphosate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.