Abstract:A scientific consensus is emerging on the benefits of direct current (DC) distribution in medium voltage (MV) power systems of ships and cities. At least 50% space savings and increased power transfer capacity are estimated with enhanced voltage DC operation of electric cables. The goal of this research is to contribute to developing the empirical knowledge on the insulation performance in order to validate the feasibility of such anticipated gains of DC versus alternating current (AC), and to determine the comparative impact of different operational conditions from a component engineering point of view. The partial discharge (PD) activity in cables is measured under AC and DC conditions as an indicator of insulation performance. Specifically, PDs in defects at the semicon-insulation interface are studied in terms of inception voltage, repetition rate and discharge magnitude. Empirical understanding is drawn for operating voltage and frequency dependence of the discharge behavior in such voids in the range of 10 to 20 kV and 0 to 0.1 Hz, respectively. The change in PD activity with void evolution post temperature-induced ageing process is explored.
This paper presents emissions modeling and testing of a four-stroke single cylinder diesel engine using conventional No. 2 diesel fuel. A system level engine simulation tool developed by Gamma Technologies, GT-Power, has been used to perform engine combustion simulations. The simulation approach is a predictive combustion simulation, direct-injection jet modeling, which is primarily used to predict the burn rate and NO x emissions.Crank angle dependent fuel injector sac pressure profiles have been measured during combustion tests and used as fuel jet inputs in the combustion modeling to predict injected fuel mass and fuel jet velocity as a function of time. In each emissions test, an in-cylinder pressure profile was measured and used for combustion model calibration to assure a correct burn rate profile was predicted and the exhaust emissions prediction was based on a calibrated burn rate profile which closely resembled the one measured in the test. Engine emissions, which include NO x , HC, CO, and CO 2 , measured at various engine speeds and loads were compared to those predicted by the combustion simulations.The modeling and testing evaluation of conventional diesel was chosen to provide a comparative baseline analysis that can be extended for predicting combustion emissions of renewable feedstock fuels in development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.