In mammogram, masses are primary indication of breast cancer; and it is necessary to classify them as malignant or benign. In this classification task, Computer Aided Diagnostic (CAD) system by using ensemble learning is able to assist radiologists to have better diagnosis of mammogram images. Ensemble learning consists of two steps, generating multiple base classifiers and then combining them together. However, combining all base classifier in the ensemble model increases the computational cost and time. Therefore, ensemble pruning is an important step in ensemble learning to select the ensemble's members. Due to huge subsets of combination in the ensemble, selecting the proper ensemble subset is desirable. The objective of this paper is to select the optimal ensemble subset by using Bee Algorithm (BA). A pool of different classifier models such as Support vector machine, k-nearest neighbour and linear discriminant analysis classifiers have been trained using different samples of training data and 12 groups of features. Then, by using this pool of classifier models, BA was used to exploit and explore random uniform combination subsets of the trained classifiers. As a result, the best subset will be selected as the optimal ensemble. The mammogram image dataset that was used to test the model has been collected from Hospital Kuala Lumpur (HKL) and consists of 263 benign and malignant masses. The proposed method gives 77 % of Area Under Curve(AUC), 83% of accuracy, 93% of specificity and 60% of sensitivity.
To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.