In this study, we designed and fabricated a high-performance humidity sensor based on a donor-acceptor polymer transistor. To improve its sensing performance, a polymeric semiconductor film with macroporous structure was prepared using a facilitated phase-separation method. The relationship between the sensing performance and the pore size was systematically investigated by testing the humidity-sensing performance. The results suggested that the sensitivity of the sensor was improved with increasing pore size within a certain range. The sensor based on the macroporous film with an average pore size of 154 nm exhibited a sensitivity of 415 and a response time of 0.68 s, as the low relative humidity (RH) changed from 32% RH (9146 ppm) to 69% RH (20 036 ppm). These sensitivity values are better than those obtained by other reported humidity sensors based on organic field-effect transistors.
A facile and controllable phase‐separation route using semiconductor/insulating polymer blends for the fabrication of a microporous semiconductor film is proposed. The microporous film‐based gas sensor exhibits excellent selectivity toward ammonia with a detection limit of 0.5 ppm, a high sensitivity of over 800 at 10 ppm NH3, and a response/recovery time of only a few seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.