Developing countries have been undergoing dramatic urban growth over the past three decades. It is essential to understand and simulate the urban growth process for smart urban planning and sustainable development purposes. Cellular automata (CA) modeling is an efficient approach to simulating urban land use/cover change; however, the traditional CA method has limitations in simulating the various urban growth patterns and processes. This study aims to analyze the influences of different urban growth characteristics on the effectiveness of CA modeling by conducting a case study over the area in the Pearl River Delta of Southern China. We used the growth rate, landscape expansion index, and spatial dependency to quantify the urban growth characteristics. The effectiveness of CA modeling was measured through a comparison of the simulation results with the reference data. The simulation results and validation analyses reveal that the traditional CA is not applicable for the following three situations: (1) the urban growth pattern characterized by less growth area or a higher ratio of outlying expansion; (2) the urban region that includes several subregions with disparate growth characteristics; and (3) the existence of temporal differences in growth characteristics over a long period.
Accurate mapping of built-up land is essential for urbanization monitoring and ecosystem research. At present, remote sensing is one of the primary means used for real-time and accurate surveying and mapping of built-up land, due to the long time series and multi-information advantages of existing remote sensing images and the ability to obtain highly precise year-by-year built-up land maps. In this study, we obtained feature-enhanced data regarding built-up land from Landsat images and phenology-based algorithms and proposed a method that combines the use of the Google Earth Engine (GEE) and deep learning approaches. The Res-UNet++ structural model was improved for built-up land mapping in Guangdong from 1991 to 2020. Experiments show that overall accuracy of built-up land map in the study area in 2020 was 0.99, the kappa coefficient was 0.96, user accuracy of built-up land was 0.98, and producer accuracy was 0.901. The trained model can be applied to other years with good results. The overall accuracy (OA) of the assessment results every five years was above 0.97, and the kappa coefficient was above 0.90. From 1991 to 2020, built-up land in Guangdong has expanded significantly, the area of built-up land has increased by 71%, and the proportion of built-up land has increased by 3.91%. Our findings indicate that the combined approach of GEE and deep learning algorithms can be developed into a large-scale, long time-series of remote sensing classification techniques framework that can be useful for future land-use mapping research.
Wengcao Village, listed in the fourth batch of traditional villages in China, is a remote Miao village which built in a landslide-prone risk, and always at the risk of geological hazard-prone area. In order to solve the contradiction between the protection of traditional villages and the economic development of traditional villages, on the basis of environmental behavior, spatial behavior and complex theory, the author combined with the investigation. For the first time, a four-dimensional collaboration model of expert supervision, enterprise leadership, government guidance, and public participation was creatively proposed to ensure the replication and relocation of traditional villages. Aim to ensure the smooth progress of the replication and construction of traditional villages, the current popular neural network prediction model and reinforcement learning multi-agent model are combined to build a replication and construction decision model and its optimize to avoid possible future risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.