Populations of grey seals (Halichoerus grypus), sprats (Sprattus sprattus) and cod (Gadus morhua) in the Baltic Sea are relatively stationary. The present work, applying classical and molecular helminthological techniques, documents that seals and cod also share a common parasite, the anisakid nematode Contracaecum osculatum, which uses seals as the final host and fish as transport hosts. Sequencing mitochondrial genes (COX1 and COX2) in adult worms from seals and third-stage larvae from livers of Baltic fish (sprats and cod), showed that all gene variants occur in both seals and fish. Other anisakid nematodes Pseudoterranova decipiens and Anisakis simplex are also found in both seals and cod in the Baltic Sea, but at much lower rates. The Baltic grey seal population was left at a critically low level (comprising a few hundred individuals) during the latter part of the 20th century, but since the year 2000 a marked increase in the population has been observed, reaching more than 40,000 individuals at present. Ecological consequences of the increased seal abundance may result from increased predation on fish stocks, but recent evidence also points to the influence of elevated parasitism on fish performance. Contracaecum osculatum larvae preferentially infect the liver of Baltic cod, considered a vital organ of the host. Whereas low prevalences and intensities in cod were reported during the 1980s and 1990s, the present study documents 100% prevalence and a mean intensity of above 80 worms per fish. Recent studies have also indicated the zoonotic potential of C. osculatum larvae in fish, following the consumption of raw or under-cooked fish. Therefore the present work discusses the impact of parasitism on the cod stock and the increasing risk for consumer health, and lists possible solutions for control.
A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6−49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6−30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31−48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007−2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1−8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (> 38 cm) compared to smaller cod (< 30 cm) recently recorded in the Baltic cod population.
Genetic selection of disease resistant fish is a major strategy to improve health, welfare and sustainability in aquaculture. Mapping of single nucleotide polymorphisms (SNP) in the fish genome may be a fruitful tool to define relevant quantitative trait loci (QTL) and we here show its use for characterization of Vibrio anguillarum resistant rainbow trout (Oncorhynchus mykiss). Fingerlings were exposed to the pathogen V. anguillarum serotype O1 in a solution of 1.5 × 107 cfu/ml and observed for 14 days. Disease signs appeared 3 days post exposure (dpe) whereafter mortality progressed exponentially until 6 dpe reaching a total mortality of 55% within 11 days. DNA was sampled from all fish – including survivors – and analyzed on a 57 k Affymetrix SNP platform whereby it was shown that disease resistance was associated with a major QTL on chromosome 21 (Omy 21). Gene expression analyses showed that diseased fish activated genes associated with innate and adaptive immune responses. The possible genes associated with resistance are discussed.
The parasitic ciliate Ichthyophthirius multifiliis has a low host specificity eliciting white spot disease (WSD) in a wide range of freshwater fishes worldwide. The parasite multiplies rapidly whereby the infection may reach problematic levels in a host population within a few days. The parasite targets both wild and cultured fish but the huge economic impact of the protozoan is associated with mortality, morbidity and treatment in aquacultural enterprises. We have investigated the potential for genetic selection of WSD‐resistant strains of rainbow trout. Applying the DNA typing system Affymetrix® and characterizing the genome of the individual fish by use of 57,501 single nucleotide polymorphisms (SNP) and their location on the rainbow trout chromosomes, we have genetically characterized rainbow trout with different levels of natural resistance towards WSD. Quantitative trait loci (QTL) used for the selection of breeders with specific markers for resistance are reported. We found a significant association between resistance towards I. multifiliis infection and SNP markers located on the two specific rainbow trout chromosomes Omy 16 and Omy 17. Comparing the expression of immune‐related genes in fish—with and without clinical signs—we recorded no significant difference. However, trout surviving the infection showed high expression levels of genes encoding IgT, T‐cell receptor TCRβ, C3, cathelicidins 1 and 2 and SAA, suggesting these genes to be associated with protection.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.