Linear Discriminant Analysis (LDA) is the most commonly employed method for classification. This method which creates a linear discriminant function yields optimal classification rule between two or more groups under the assumptions of normality and homoscedasticity (equal covariance matrices). However, the calculation of parametric LDA highly relies on the sample mean vectors and pooled sample covariance matrix which are sensitive to non-normality. To overcome the sensitivity of this method towards non-normality as well as homoscedasticity, this study proposes two new robust LDA models. In these models, an automatic trimmed mean and its corresponding winsorized mean are employed to replace the mean vector in the parametric LDA. Meanwhile, for the covariance matrix, this study introduces two robust approaches namely the winsorization and the multiplication of Spearman's rho with the corresponding robust scale estimator used in the trimming process. Simulated and real financial data are used to test the performance of the proposed methods in terms of misclassification rate. The numerical result shows that the new method performs better if compared to the parametric LDA and the robust LDA with S-estimator. Thus, these new models can be recommended as alternatives to the parametric LDA when non-normality and heteroscedasticity (unequal covariance matrices) exist.
This research centres on independent group test of comparing two or more means by using the parametric method, namely the Alexander-Govern test. The Alexander-Govern (AG) test uses mean as a measure of its central tendency. It is a better alternative to the Welch test, James test and the ANOVA, because it has a good control of Type I error rates and produces a high power efficient for a normal data under variance heterogeneity, but not for non-normal data. As a result, trimmed mean was applied on the test under non-normal data for two group condition, but as the number of groups increased above two, the test fails to be robust. Due to this, when the MOM estimator was applied on the test, it was not influenced by the number of groups, but failed to give a good control of Type I error rates under skewed heavy tailed distribution. In this research, the Winsorized MOM estimator was applied in AG test as a measure of its central tendency. 5,000 data sets were simulated and analysed using Statistical Analysis Software (SAS). The result shows that with the pairing of unbalanced sample size with unequal variance of (1:36) and the combination of both balanced and unbalanced sample sizes with both equal and unequal variances, under six group condition, for g = 0.5 and h = 0.5, for both positive and negative pairing condition, the test gives a remarkable control of Type I error rates. In overall, the AGWMOM test has the best control of Type I error rates, across the distributions and across the groups, compared to the AG test, the AGMOM test and the ANOVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.