To address the question of segregated projections from the internal segment of the globus pallidus (GPi) and the cerebellar nuclei (Cb) to the thalamus in the monkey, we employed a double anterograde labeling strategy combining the anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) with biotinylated dextran amine (BDA) transport. The tissue was processed sequentially for WGA-HRP, and then BDA immunohistochemistry using two different chromogens. Since the two labels were easily distinguishable on the same histological section, the interrelationship between the cerebellar and pallidal projection systems could be directly evaluated. We found that both the cerebellothalamic and pallidothalamic label consisted of dense plexuses of labeled fibers and swellings in a patch-like configuration. The patches or foci of labeling were distributed either as dense single label or as interdigitating patches of double label. We found dense single label in the central portion of the ventral anterior nucleus pars principalis (VApc) and the ventral lateral nucleus pars oralis (VLo) following the GPi injections or in the central portion of the ventral posterior lateral nucleus pars oralis (VPLo) and nucleus X (X) following the cerebellar nuclei injections. Complementary interdigitating patches of WGA-HRP and BDA labeling were found primarily in transitional border regions between thalamic nuclei. On occasion, we found overlap of both labels. We observed a gradient pattern in the density of the pallidothalamic and cerebellothalamic projections. The pallidothalamic territory included VApc, VLo, and the ventral lateral nucleus pars caudalis (VLc), with the density of these projections decreasing along an anterior to posterior gradient in the thalamus. Occasional patches of pallidal label were found in VPLo and nucleus X. Conversely, the density of cerebellothalamic projections increased along the same gradient, with the cerebellothalamic territory extending anteriorly beyond the cell-sparse zones of VPLo, X, and VLc to include VLo and VApc also. These data suggest that although the cerebellar and pallidal projections primarily occupy separate thalamic territories, individual thalamic nuclei receive differentially weighted inputs from these sources.
If the large brains and great intelligence characteristic of primates were favoured by selection pressures associated with life in complex societies, then cognitive abilities and nervous systems with primate-like attributes should have evolved convergently in non-primate mammals living in large, elaborate societies in which social dexterity enhances individual fitness. The societies of spotted hyenas are remarkably like those of cercopithecine primates with respect to size, structure and patterns of competition and cooperation. These similarities set an ideal stage for comparative analysis of social intelligence and nervous system organization. As in cercopithecine primates, spotted hyenas use multiple sensory modalities to recognize their kin and other conspecifics as individuals, they recognize third-party kin and rank relationships among their clan mates, and they use this knowledge adaptively during social decision making. However, hyenas appear to rely more intensively than primates on social facilitation and simple rules of thumb in social decision making. No evidence to date suggests that hyenas are capable of true imitation. Finally, it appears that the gross anatomy of the brain in spotted hyenas might resemble that in primates with respect to expansion of frontal cortex, presumed to be involved in the mediation of social behaviour.
The topographic organization of the facial nucleus motoneurons in the rat was investigated with the horseradish peroxidase retrograde tracing method using tetramethyl benzidine as a chromogen. Facial muscles were ''represented'' on the facial nucleus in an orderly fashion. For example, the motoneurons supplying the rostral (nasolabial) muscles are laterally placed, whereas those supplying the caudal (auricular) muscles are medially placed. Notable findings in this study are: (i) the relatively unremarkable size of the nasolabial (vibrissal) muscle representation; there does not seem to be an increase in size of this part of the nucleus, commensurate with the specialized sensory functions of the vibrissal area of the face and (ii) the neurons supplying the posterior belly of the digastric are found in the suprafacial nucleus winch lies about 1 mm dorsal to the main facial nucleus.
The ability to break open large bones has evolved independently in only three groups of carnivorous mammals, all of which have robust teeth, vaulted foreheads, and pronounced sagittal crests. One unusual skull feature, present in bone-cracking members of the family Hyaenidae, is a caudally elongated frontal sinus, hypothesized to function in resistance to bending and stress dissipation during bone-cracking. In the present study, we used finite element (FE) analysis to examine patterns of stress distribution in the spotted hyena (Crocuta crocuta) skull during unilateral biting, and inquire about the functional role of the fronto-parietal sinus in stress dissipation. We constructed and compared three FE models: (1) a 'normal' model of an adult Crocuta skull;(2) a model in which the caudal portion of the fronto-parietal sinus was filled with bone; and (3) a model in which we flattened the sagittal crest to resemble the plate-like crests of other mammals. During biting, an arc of stress extends from the bite point up through the vaulted forehead and along the sagittal crest. Our results suggest that pneumatization of the hyena's skull both enhances its ability to resist bending and, together with the vaulted forehead, plays a critical role in evenly dissipating stress away from the facial region.
Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.