This is a second part of the paper presenting a miniature, combustion-type gas sensor (dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic reaction plate, where ignition of the gas takes place. Part 1 focused on the chemical and technological aspects of the sensor. In part 2, the emphasis is on the physical aspects of the reaction micro-hot plate on which the catalytic layer is deposited. The three main challenges in designing the hot plate are addressed: (i) How to design a hot plate operating in air, with a low thermal conductivity; (ii) how to measure the temperature of the hot plate during operation; (iii) how to reduce the total consumed power during operation. Reported simulated as well as analytical models and measured results are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.