Summary Signaling through GABAA receptors controls neural progenitor cell (NPC) development in vitro and is altered in schizophrenic and autistic individuals. However, the in vivo function of GABAA signaling on neural stem cell proliferation, and ultimately neurogenesis, remains unknown. To examine GABAA function in vivo, we electroporated plasmids encoding short-hairpin RNA against the Na-K-2Cl co-transporter NKCC1 in NPCs of the neonatal subventricular zone (SVZ) in mice to reduce GABAA-induced depolarization. Reduced GABAA depolarization identified by a loss of GABAA-induced calcium responses in most electroporated NPCs led to a 70% decrease in the number of proliferative Ki67+ NPCs and a 60% reduction in newborn neuron density. Premature loss of GABAA depolarization in newborn neurons resulted in truncated dendritic arborization at the time of synaptic integration. However, by 6 weeks the dendritic tree had partially recovered and displayed a small, albeit significant, decrease in dendritic complexity but not total dendritic length. To further examine GABAA function on NPCs, we treated animals with a GABAA allosteric agonist, pentobarbital. Enhancement of GABAA activity in NPCs increased the number of proliferative NPCs by 60%. Combining shNKCC1 and pentobarbital prevented the shNKCC1 and the pentobarbital effects on NPC proliferation, suggesting that these manipulations affected NPCs through GABAA receptors. Thus, dysregulation in GABAA depolarizing activity delayed dendritic development and reduced NPC proliferation resulting in decreased neuronal density.
The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55 212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration-suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55 212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner-suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55 212-2.
Neural stem cells and progenitor cells (NPCs) are increasingly appreciated to hold great promise for regenerative medicine to treat CNS injuries and neurodegenerative diseases. However, evidence for effective stimulation of neuronal production from endogenous or transplanted NPCs for neuron replacement with small molecules remains limited. To identify novel chemical entities/targets for neurogenesis, we had established a NPC phenotypic screen assay and validated it using known small-molecule neurogenesis inducers. Through screening small molecule libraries with annotated targets, we identified BET bromodomain inhibition as a novel mechanism for enhancing neurogenesis. BET bromodomain proteins, Brd2, Brd3, and Brd4 were found to be downregulated in NPCs upon differentiation, while their levels remain unaltered in proliferating NPCs. Consistent with the pharmacological study using bromodomain selective inhibitor (+)-JQ-1, knockdown of each BET protein resulted in an increase in the number of neurons with simultaneous reduction in both astrocytes and oligodendrocytes. Gene expression profiling analysis demonstrated that BET bromodomain inhibition induced a broad but specific transcription program enhancing directed differentiation of NPCs into neurons while suppressing cell cycle progression and gliogenesis. Together, these results highlight a crucial role of BET proteins as epigenetic regulators in NPC development and suggest a therapeutic potential of BET inhibitors in treating brain injuries and neurodegenerative diseases.
Functional magnetic resonance imaging (fMRI) is employed in many behavior analysis studies, with blood oxygen level dependent- (BOLD-) contrast imaging being the main method used to generate images. The use of BOLD-contrast imaging in fMRI has been refined over the years, for example, the inclusion of a spin echo pulse and increased magnetic strength were shown to produce better recorded images. Taking careful precautions to control variables during measurement, comparisons between different specimen groups can be illustrated by fMRI imaging using both quantitative and qualitative methods. Differences have been observed in comparisons of active and resting, developing and aging, and defective and damaged brains in various studies. However, cognitive studies using fMRI still face a number of challenges in interpretation that can only be overcome by imaging large numbers of samples. Furthermore, fMRI studies of brain cancer, lesions and other brain pathologies of both humans and animals are still to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.